Skip to main content
Log in

Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated.

Material and methods

Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument.

Results

Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique.

Conclusion

Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor.

Clinical relevance

Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Elias CN, Rocha FA, Nascimento AL, Coelho PG (2012) Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J Mech Behav Biomed Mater 16:169–180. https://doi.org/10.1016/j.jmbbm.2012.10.010

    Article  PubMed  Google Scholar 

  2. Brisman DL (1996) The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants 11:35–37

    PubMed  Google Scholar 

  3. Ercoli C, Funkenbusch PD, Lee HJ, Moss ME, Graser GN (2004) The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants 19:335–349

    PubMed  Google Scholar 

  4. Davidson SR, James DF (2003) Drilling in bone: modeling heat generation and temperature distribution. J Biomech Eng 125:305–314

    Article  PubMed  Google Scholar 

  5. Eriksson RA, Adell R (1986) Temperatures during drilling for the placement of implants using the osseointegration technique. J Oral Maxillofac Surg 44(1):4–7. https://doi.org/10.1016/0278-2391(86)90006-6

    Article  PubMed  Google Scholar 

  6. Abouzgia MB, Symington JM (1996) Effect of drill speed on bone temperature. Int J Oral Maxillofac Surg 25:394–399

    Article  PubMed  Google Scholar 

  7. Sener BC, Dergin G, Gursoy B, Kelesoglu E, Slih I (2009) Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin Oral Implants Res 20:294–298. https://doi.org/10.1111/j.1600-0501.2008.01643.x

    Article  PubMed  Google Scholar 

  8. dos Santos PL, Queiroz TP, Margonar R, de Souza Carvalho AC, Betoni W Jr, Rezende RR, dos Santos PH, Garcia IR Jr (2014) Evaluation of bone heating, drill deformation, and drill roughness after implant osteotomy: guided surgery and classic drilling procedure. Int J Oral Maxillofac Implants 29(1):51–58. https://doi.org/10.11607/jomi.2919

    Article  PubMed  Google Scholar 

  9. Mohlhenrich SC, Abouridouane M, Heussen N, Modabber A, Klocke F, Holzle F (2016) Influence of bone density and implant drill diameter on the resulting axial force and temperature development in implant burs and artificial bone: an in vitro study. Oral Maxillofac Surg 20:135–142. https://doi.org/10.1007/s10006-015-0536-z

    Article  PubMed  Google Scholar 

  10. Fuchsberger A (1988) Damaging temperature during the machining of bone. Unfallchirurgie 14:173–183

    PubMed  Google Scholar 

  11. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128:71–77. https://doi.org/10.1007/s00402-007-0427-3

    Article  PubMed  Google Scholar 

  12. Iyer S, Weiss C, Mehta A (1997) Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part II: relationship between drill speed and healing. Int J Prosthodont 10:536–540

    PubMed  Google Scholar 

  13. Bettach R, Taschieri S, Boukhris G, Del Fabbro M (2015) Implant survival after preparation of the implant site using a single bur: a case series. Clin Implant Dent Relat Res 17:13–21. https://doi.org/10.1111/cid.12082

    Article  PubMed  Google Scholar 

  14. Gehrke SA, Bettach R, Taschieri S, Boukhris G, Corbella S, Del Fabbro M (2015) Temperature changes in cortical bone after implant site preparation using a single bur versus multiple drilling steps: an in vitro investigation. Clin Implant Dent Relat Res 17:700–707. https://doi.org/10.1111/cid.12172

    Article  PubMed  Google Scholar 

  15. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP (2008) A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res 19(2):119–130. https://doi.org/10.1111/j.1600-0501.2007.01453.x

    Article  PubMed  Google Scholar 

  16. Arisan V, Karabuda ZC, Ozdemir T (2010) Accuracy of two stereolithographic guide systems for computer-aided implant placement: a computed tomography-based clinical comparative study. J Periodontol 81:43–51. https://doi.org/10.1902/jop.2009.090348

    Article  PubMed  Google Scholar 

  17. Valente F, Schiroli G, Sbrenna A (2009) Accuracy of computer-aided oral implant surgery: a clinical and radiographic study. Int J Oral Maxillofac Implants 24:234–242

    PubMed  Google Scholar 

  18. Bulloch SE, Olsen RG, Bulloch B (2012) Comparison of heat generation between internally guided (cannulated) single drill and traditional sequential drilling with and without a drill guide for dental implants. Int J Oral Maxillofac Implants 27:1456–1460

    PubMed  Google Scholar 

  19. Bardyn T, Gedet P, Hallermann W, Buchler P (2009) Quantifying the influence of bone density and thickness on resonance frequency analysis: an in vitro study of biomechanical test materials. Int J Oral Maxillofac Implants 24:1006–1014

    PubMed  Google Scholar 

  20. Swami V, Vijayaraghavan V, Swami V (2016) Current trends to measure implant stability. J Indian Prosthodont Soc 16:124–130. https://doi.org/10.4103/0972-4052.176539

    Article  PubMed  PubMed Central  Google Scholar 

  21. Scherer U, Stoetzer M, Ruecker M, Gellrich NC, von See C (2015) Template-guided vs. non-guided drilling in site preparation of dental implants. Clin Oral Investig 19:1339–1346. https://doi.org/10.1007/s00784-014-1346-7

    Article  PubMed  Google Scholar 

  22. Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):010802. https://doi.org/10.1115/1.4029176

    Article  Google Scholar 

  23. Haiat G, Wang HL, Brunski J (2014) Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Annu Rev Biomed Eng 16:187–213. https://doi.org/10.1146/annurev-bioeng-071813-104854

    Article  PubMed  Google Scholar 

  24. Kim SK, Lee HN, Choi YC, Heo SJ, Lee CW, Choie MK (2006) Effects of anodized oxidation or turned implants on bone healing after using conventional drilling or trabecular compaction technique: histomorphometric analysis and RFA. Clin Oral Implants Res 17(6):644–650. https://doi.org/10.1111/j.1600-0501.2006.01285.x

    Article  PubMed  Google Scholar 

  25. Sennerby L (2008) Dental implants: matters of course and controversies. Periodontol 2000(47):9–14. https://doi.org/10.1111/j.1600-0757.2008.00268.x

    Article  Google Scholar 

  26. Sennerby L, Meredith N (2008) implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 47:51–66. https://doi.org/10.1111/j.1600-0757.2008.00267.x

    Article  Google Scholar 

  27. Friberg B, Ekestubbe A, Sennerby L (2002) Clinical outcome of Branemark system implants of various diameters: a retrospective study. Int J Oral Maxillofac Implants 17:671–677

    PubMed  Google Scholar 

  28. Tabassum A, Meijer GJ, Wolke JG, Jansen JA (2010) Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res 21:213–220. https://doi.org/10.1111/j.1600-0501.2009.01823.x

    Article  PubMed  Google Scholar 

  29. MacAvelia T, Salahi M, Olsen M, Crookshank M, Schemitsch EH, Ghasempoor A, Janabi-Sharifi F, Zdero R (2012) Biomechanical measurements of surgical drilling force and torque in human versus artificial femurs. J Biomech Eng 134:124503. https://doi.org/10.1115/1.4007953

    Article  PubMed  Google Scholar 

  30. Macavelia T, Ghasempoor A, Janabi-Sharifi F (2012) Force and torque modelling of drilling simulation for orthopaedic surgery. Comput Methods Biomech Biomed Engin 17(12):1285–1294. https://doi.org/10.1080/10255842.2012.739163

    Article  PubMed  Google Scholar 

  31. Dhore CR, Snel SJ, Jacques SV, Naert IE, Walboomers XF, Jansen JA (2008) In vitro osteogenic potential of bone debris resulting from placement of titanium screw-type implants. Clin Oral Implants Res 19:606–611. https://doi.org/10.1111/j.1600-0501.2007.01519.x

    Article  PubMed  Google Scholar 

  32. Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ (2006) Bone graft materials and synthetic substitutes. Radiol Clin North Am 44(3):451–461. https://doi.org/10.1016/j.rcl.2006.01.001

    Article  PubMed  Google Scholar 

  33. Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ, Menke DM, DeOrio JK (2006) Imaging characteristics of bone graft materials. Radiographics 26(2):373–388. https://doi.org/10.1148/rg.262055039

    Article  PubMed  Google Scholar 

  34. Gao SS, Zhang YR, Zhu ZL, Yu HY (2012) Micromotions and combined damages at the dental implant/bone interface. Int J Oral Sci 4:182–188. https://doi.org/10.1038/ijos.2012.68

    Article  PubMed  PubMed Central  Google Scholar 

  35. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH (1998) Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 43:192–203. https://doi.org/10.1002/(SICI)1097-4636(199822)43:23.0.CO;2-K

    Article  PubMed  Google Scholar 

  36. Frisardi G, Barone S, Razionale AV, Paoli A, Frisardi F, Tullio A, Lumbau A, Chessa G (2012) Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis. Head Face Med 8(1):18. https://doi.org/10.1186/1746-160X-8-18

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alghamdi H, Anand PS, Anil S (2011) Undersized implant site preparation to enhance primary implant stability in poor bone density: a prospective clinical study. J Oral Maxillofac Surg 69(12):e506–e512. https://doi.org/10.1016/j.joms.2011.08.007

    Article  PubMed  Google Scholar 

  38. Anitua E, Alkhraisat MH, Pinas L, Orive G (2014) Efficacy of biologically guided implant site preparation to obtain adequate primary implant stability. Ann Anat 199:9–15

    Article  PubMed  Google Scholar 

  39. Coelho PG, Marin C, Teixeira HS, Campos FE, Gomes JB, Guastaldi F, Anchieta RB, Silveira L, Bonfante EA (2013) Biomechanical evaluation of undersized drilling on implant biomechanical stability at early implantation times. J Oral Maxillofac Surg 71:e69–e75. https://doi.org/10.1016/j.joms.2012.10.008

    Article  PubMed  Google Scholar 

  40. Penarrocha M, Garcia B, Marti E, Balaguer J (2006) Pain and inflammation after periapical surgery in 60 patients. J Oral Maxillofac Surg 64:429–433

    Article  PubMed  Google Scholar 

  41. Jimbo R, Janal MN, Marin C, Giro G, Tovar N, Coelho PG (2014) The effect of implant diameter on osseointegration utilizing simplified drilling protocols. Clin Oral Implants Res 25(11):1295–1300. https://doi.org/10.1111/clr.12268

    Article  PubMed  Google Scholar 

  42. Giro G, Tovar N, Marin C, Bonfante EA, Jimbo R, Suzuki M, Janal MN, Coelho PG (2013) The effect of simplifying dental implant drilling sequence on osseointegration: an experimental study in dogs. Int J Biomater 2013:230310–230316. https://doi.org/10.1155/2013/230310

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gehrke SA (2015) Evaluation of the cortical bone reaction around of implants using a single-use final drill: a histologic study. J Craniofac Surg 26:1482–1486. https://doi.org/10.1097/SCS.0000000000001788

    Article  PubMed  Google Scholar 

  44. Bratu E, Mihali S, Shapira L, Bratu DC, Wang HL (2015) Crestal bone remodeling around implants placed using a short drilling protocol. Int J Oral Maxillofac implants 30:435–440. https://doi.org/10.11607/jomi.3526

    Article  PubMed  Google Scholar 

  45. Jimbo R, Tovar N, Anchieta RB, Machado LS, Marin C, Teixeira HS, Coelho PG (2014) The combined effects of undersized drilling and implant macrogeometry on bone healing around dental implants: an experimental study. Int J Oral Maxillofac Surg. 43:1269–1275. https://doi.org/10.1016/j.ijom.2014.03.017

    Article  PubMed  Google Scholar 

  46. Park SY, Shin SY, Yang SM, Kye SB (2010) Effect of implant drill design on the particle size of the bone collected during osteotomy. Int J Oral Maxillofac Surg 39:1007–1011. https://doi.org/10.1016/j.ijom.2010.05.009

    Article  PubMed  Google Scholar 

  47. Abboud M, Delgado-Ruiz RA, Kucine A, Rugova S, Balanta J, Calvo-Guirado JL (2015) Multistepped drill design for single-stage implant site preparation: experimental study in type 2 bone. Clin Implant Dent Relat Res 17(Suppl 2):e472–e485. https://doi.org/10.1111/cid.12273

    Article  PubMed  Google Scholar 

  48. Schneider D, Marquardt P, Zwahlen M, Jung RE (2009) A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clin Oral Implants Res 20(Suppl 4):73–86. https://doi.org/10.1111/j.1600-0501.2009.01788.x

    Article  PubMed  Google Scholar 

  49. Allsobrook OF, Leichter J, Holborrow D, Swain M (2011) Descriptive study of the longevity of dental implant surgery drills. Clin Implant Dent Relat Res 13:244–254

    Article  PubMed  Google Scholar 

  50. Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM (2006) Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg 64:265–269. https://doi.org/10.1016/j.joms.2005.10.011

    Article  PubMed  Google Scholar 

  51. Brief J, Edinger D, Hassfeld S, Eggers G (2005) Accuracy of image-guided implantology. Clin Oral Implants Res 16(4):495–501. https://doi.org/10.1111/j.1600-0501.2005.01133.x

    Article  PubMed  Google Scholar 

  52. Fortin T, Bosson JL, Coudert JL, Isidori M (2003) Reliability of preoperative planning of an image-guided system for oral implant placement based on 3-dimensional images: an in vivo study. Int J Oral Maxillofac Implants 18(6):886–893

    PubMed  Google Scholar 

  53. Nickenig HJ, Eitner S, Rothamel D, Wichmann M, Zoller JE (2012) Possibilities and limitations of implant placement by virtual planning data and surgical guide templates. Int J Comput Dent 15:9–21

    PubMed  Google Scholar 

  54. Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 18:571–577

    PubMed  Google Scholar 

  55. Schnitman PA, Hayashi C, Han RK (2014) Why guided when freehand is easier, quicker, and less costly? J Oral Implantol 40:670–678. https://doi.org/10.1563/aaid-joi-D-14-00231

    Article  PubMed  Google Scholar 

  56. van Steenberghe D, Glauser R, Blomback U, Andersson M, Schutyser F, Pettersson A, Wendelhag I (2005) A computed tomographic scan-derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: a prospective multicenter study. Clin Implant Dent Relat Res 7(Suppl 1):S111–S120

    Article  PubMed  Google Scholar 

  57. D'haese J, Van De Velde T, Komiyama A, Hultin M, De Bruyn H (2012) Accuracy and complications using computer-designed stereolithographic surgical guides for oral rehabilitation by means of dental implants: a review of the literature. Clin Implant Dent Relat Res 14:321–335. https://doi.org/10.1111/j.1708-8208.2010.00275.x

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Klinik für Mund-, Kiefer- und Gesichtschirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Marheineke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marheineke, N., Scherer, U., Rücker, M. et al. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures. Clin Oral Invest 22, 2057–2067 (2018). https://doi.org/10.1007/s00784-017-2312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-017-2312-y

Keywords

Navigation