Skip to main content

Advertisement

Log in

Normoxic accumulation of HIF1α is associated with glutaminolysis

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The stabilization of the transcription factor and prognostic tumor marker hypoxia-inducible factor 1α (HIF1α) is considered to be crucial for cellular metabolic adaptations to hypoxia. However, HIF1α has also been shown to accumulate under normoxic conditions, although this phenomenon is poorly understood.

Methods

We investigated the conditions for normoxic HIF1α stabilization in different tumor cell lines (e.g., two mammary carcinoma cell lines and three oral squamous cell carcinoma cell lines) via Western blot analysis or immunohistochemical staining. The transcriptional activity of HIF1 was demonstrated by analyzing the messenger RNA (mRNA) expression of the HIF1 target carbonic anhydrase 9 (CA9) via PCR.

Results

Our data demonstrate that the combined incubation of tumor cells with glutamine and growth factors (e.g., EGF, insulin, and serum) mediates the normoxic accumulation of HIF1α in vitro. Consequently, the inhibition of glutaminolysis by a glutaminase inhibitor blocked the normoxic accumulation of HIF1α. Additionally, the normoxic HIF1α protein displayed nuclear translocation and transcriptional activity, which was confirmed by the induction of CA9 mRNA expression. Furthermore, the normoxic accumulation of HIF1α was associated with impaired proliferation of tumor cells. Finally, ammonia, the toxic waste product of glutaminolysis, induced a normoxic accumulation of HIF1α to the same extent as glutamine.

Conclusion

Our study suggests that HIF1α is involved in the regulation of glutamine metabolism and the cellular levels of the toxic metabolic waste product ammonia under normoxia. Hence, our results, together with data presented in the literature, support the hypothesis that HIF1α and its target genes play a crucial role in metabolic pathways, such as glutaminolysis and glycolysis, under both hypoxic and normoxic conditions.

Clinical relevance

Therefore, the inhibition of HIF1α (and/or HIF1α target genes) could emerge as a promising therapeutic approach that would result in the accumulation of toxic metabolic waste products in tumor cells as well as the reduction of their nutrition and energy supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 19(1):12–16. doi:10.1016/j.semcancer.2008.11.009

    Article  PubMed  Google Scholar 

  2. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56. doi:10.1016/j.gde.2009.10.009

    Article  PubMed  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:10.1126/science.1160809

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337. doi:10.1038/nrc3038

    Article  PubMed  Google Scholar 

  5. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20. doi:10.1016/j.cmet.2007.10.002

    Article  PubMed  Google Scholar 

  6. Miller AL (1999) Therapeutic considerations of L-glutamine: a review of the literature. Altern Med Rev 4(4):239–248

    PubMed  Google Scholar 

  7. Dang CV (2010) Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle 9(19):3884–3886. doi:10.4161/cc.9.19.13302

    Article  PubMed  Google Scholar 

  8. Dang CV, Hamaker M, Sun P, et al. (2011) Therapeutic targeting of cancer cell metabolism. J Mol Med 89(3):205–212. doi:10.1007/s00109-011-0730-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70(3):859–862. doi:10.1158/0008-5472.CAN-09-3556

    Article  PubMed  PubMed Central  Google Scholar 

  10. Smolková K, Bellance N, Scandurra F, et al. (2010) Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42(1):55–67. doi:10.1007/s10863-009-9267-x

    Article  PubMed  Google Scholar 

  11. Smolková K, Plecitá-Hlavatá L, Bellance N, et al. (2011) Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43(7):950–968. doi:10.1016/j.biocel.2010.05.003

    Article  PubMed  Google Scholar 

  12. Fendt S, Bell EL, Keibler MA, et al. (2013) Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat Commun 4:2236. doi:10.1038/ncomms3236

    Article  PubMed  PubMed Central  Google Scholar 

  13. Epstein AC, Gleadle JM, McNeill LA, et al. (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation//C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54. doi:10.1016/S0092-8674(01)00507-4

    Article  PubMed  Google Scholar 

  14. Ivan M, Kondo K, Yang H, et al. (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468. doi:10.1126/science.1059817

    Article  PubMed  Google Scholar 

  15. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187

    Article  PubMed  Google Scholar 

  16. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408. doi:10.1016/j.cell.2012.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kappler M, Taubert H, Holzhausen H, et al. (2008) Immunohistochemical detection of HIF-1α and CAIX in advanced head-and-neck cancer. Strahlenther Onkol 184(8):393–399. doi:10.1007/s00066-008-1813-7

    Article  PubMed  Google Scholar 

  18. Bache M, Kappler M, Said HM, et al. (2008) Detection and specific targeting of hypoxic regions within solid tumors: current preclinical and clinical strategies. Curr Med Chem 15(4):322–338. doi:10.2174/092986708783497391#sthash.igXXfwmp.dpuf

    Article  PubMed  Google Scholar 

  19. Eckert AW, Lautner MHW, Schütze A, et al. (2010) Co-expression of Hif1alpha and CAIX is associated with poor prognosis in oral squamous cell carcinoma patients. J Oral Pathol Med 39(4):313–317. doi:10.1111/j.1600-0714.2009.00829.x

    PubMed  Google Scholar 

  20. Eckert AW, Lautner MHW, Schütze A, et al. (2011) Coexpression of hypoxia-inducible factor-1α and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 58(7):1136–1147. doi:10.1111/j.1365-2559.2011.03806.x

    Article  PubMed  Google Scholar 

  21. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239. doi:10.1007/s10555-007-9055-1

    Article  PubMed  Google Scholar 

  22. Zhang H, Bosch-Marce M, Shimoda LA, et al. (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903. doi:10.1074/jbc.M800102200

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koivunen P, Hirsilä M, Remes AM, et al. (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282(7):4524–4532. doi:10.1074/jbc.M610415200

    Article  PubMed  Google Scholar 

  24. King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25(34):4675–4682. doi:10.1038/sj.onc.1209594

    Article  PubMed  Google Scholar 

  25. Ashrafian H, O’Flaherty L, Adam J, et al. (2010) Expression profiling in progressive stages of fumarate-hydratase deficiency: the contribution of metabolic changes to tumorigenesis. Cancer Res 70(22):9153–9165. doi:10.1158/0008-5472.CAN-10-1949

    Article  PubMed  Google Scholar 

  26. Kwon SJ, Lee YJ (2005) Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin Cancer Res 11(13):4694–4700. doi:10.1158/1078-0432.CCR-04-2530

    Article  PubMed  Google Scholar 

  27. Vordermark D, Kraft P, Katzer A, et al. (2005) Glucose requirement for hypoxic accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). Cancer Lett 230(1):122–133. doi:10.1016/j.canlet.2004.12.040

    Article  PubMed  Google Scholar 

  28. Zundel W, Schindler C, Haas-Kogan D, et al. (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14(4):391–396

    PubMed  PubMed Central  Google Scholar 

  29. Peng X, Karna P, Cao Z, et al. (2006) Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem 281(36):25903–25914. doi:10.1074/jbc.M603414200

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang L, Zhou W, Gou S, et al. (2010) Insulin promotes proliferative vitality and invasive capability of pancreatic cancer cells via hypoxia-inducible factor 1alpha pathway. J Huazhong Univ Sci Technol Med Sci 30(3):349–353. doi:10.1007/s11596-010-0355-2

    Article  PubMed  Google Scholar 

  31. Blancher C, Moore JW, Robertson N, et al. (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res 61(19):7349–7355

    PubMed  Google Scholar 

  32. Dayan F, Bilton RL, Laferrière J, et al. (2009) Activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway. J Cell Physiol 218(1):167–174. doi:10.1002/jcp.21584

    Article  PubMed  Google Scholar 

  33. Mayer A, Höckel M, Vaupel P (2008) Endogenous hypoxia markers: case not proven! Adv Exp Med Biol 614(614):127–136. doi:10.1007/978-0-387-74911-2_15

    Article  PubMed  Google Scholar 

  34. Hernandez VJ, Weng J, Ly P, et al. (2013) Cavin-3 dictates the balance between ERK and Akt signaling. Elife 2:e00905. doi:10.7554/elife.00905

    Article  PubMed  PubMed Central  Google Scholar 

  35. Parks SK, Chiche J, Pouysségur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13(9):611–623. doi:10.1038/nrc3579

    Article  PubMed  Google Scholar 

  36. Kappler M, Taubert H, Eckert AW (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med (365):1845–1846. doi:10.1056/NEJMc1110602#SA2

    Google Scholar 

  37. Kappler M, Taubert H, Schubert J, et al. (2012) The real face of HIF1α in the tumor process. Cell Cycle 11(21):3932–3936. doi:10.4161/cc.21854

    Article  PubMed  PubMed Central  Google Scholar 

  38. Griffiths JR, McSheehy PMJ, Robinson SP, et al. (2002) Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): evidence of an anabolic role for the HIF-1 pathway. Cancer Res 62(3):688–695

    PubMed  Google Scholar 

  39. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277(26):23111–23115. doi:10.1074/jbc.M202487200

    Article  PubMed  Google Scholar 

  40. Lu H, Dalgard CL, Mohyeldin A, et al. (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280(51):41928–41939. doi:10.1074/jbc.M508718200

    Article  PubMed  Google Scholar 

  41. Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123(9):3664–3671. doi:10.1172/JCI67230

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19(2):285–292. doi:10.1016/j.cmet.2013.11.022

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tallis S, Caltana LR, Souto PA, et al. (2014) Changes in CNS cells in hyperammonemic portal hypertensive rats. J Neurochem 128(3):431–444. doi:10.1111/jnc.12458

    Article  PubMed  Google Scholar 

  44. Hobiger G (1996) Ammoniak in Wasser: Ableitung einer Formel zur Berechnung von Ammoniak in wäßrigen Lösungen. Berichte/Umweltbundesamt, Umweltbundesamt, Wien

    Google Scholar 

  45. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713. doi:10.1038/nrc2468

    Article  PubMed  Google Scholar 

  46. DeBerardinis RJ, Mancuso A, Daikhin E, et al. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350. doi:10.1073/pnas.0709747104

    Article  PubMed  PubMed Central  Google Scholar 

  47. Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92(3):329–333. doi:10.1016/j.radonc.2009.06.025

    Article  PubMed  Google Scholar 

  48. Meng M, Chen S, Lao T, et al. (2010) Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Cell Cycle 9(19):3921–3932. doi:10.4161/cc.9.19.13139

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21(3):297–308. doi:10.1016/j.ccr.2012.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  50. Demidenko ZN, Blagosklonny MV (2014) The purpose of the HIF-1/PHD feedback loop: to limit mTOR-induced HIF-1α. Cell Cycle 10(10):1557–1562. doi:10.4161/cc.10.10.15789

    Article  Google Scholar 

  51. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35(8):427–433. doi:10.1016/j.tibs.2010.05.003

    Google Scholar 

  52. Shanware NP, Bray K, Eng CH, et al. (2014) Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion. Nat Commun 5:4900. doi:10.1038/ncomms5900

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stiehl DP, Jelkmann W, Wenger RH, et al. (2002) Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 512(1–3):157–162

    Article  PubMed  Google Scholar 

  54. Hernández-Bedolla MA, Carretero-Ortega J, Valadez-Sánchez M, et al. (2015) Chemotactic and proangiogenic role of calcium sensing receptor is linked to secretion of multiple cytokines and growth factors in breast cancer MDA-MB-231 cells. Biochim Biophys Acta 1853(1):166–182. doi:10.1016/j.bbamcr.2014.10.011

    Article  PubMed  Google Scholar 

  55. McQueen A, Bailey JE (1990) Effect of ammonium ion and extracellular pH on hybridoma cell metabolism and antibody production. Biotechnol Bioeng 35(11):1067–1077. doi:10.1002/bit.260351102

    Article  PubMed  Google Scholar 

  56. Ferreira TB, Carrondo MJT, Alves PM (2007) Effect of ammonia production on intracellular pH: consequent effect on adenovirus vector production. J Biotechnol 129(3):433–438. doi:10.1016/j.jbiotec.2007.01.010

    Article  PubMed  Google Scholar 

  57. Chiche J, Brahimi-Horn MC, Pouysségur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14(4):771–794. doi:10.1111/j.1582-4934.2009.00994.x

    Article  PubMed  Google Scholar 

  58. Trivedi B, Danforth WH (1966) Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 241(17):4110–4112

    PubMed  Google Scholar 

  59. Yu Z, Persson H, Eaton JW, et al. (2003) Intralysosomal iron: a major determinant of oxidant-induced cell death. Free Radic Biol Med 34(10):1243–1252. doi:10.1016/S0891-5849(03)00109-6

    Article  PubMed  Google Scholar 

  60. Brahimi-Horn MC, Bellot G, Pouysségur J (2011) Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev 21(1):67–72. doi:10.1016/j.gde.2010.10.006

    Article  PubMed  Google Scholar 

  61. Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226(2):299–308. doi:10.1002/jcp.22400

    Article  PubMed  Google Scholar 

  62. Parks SK, Mazure NM, Counillon L, et al. (2013) Hypoxia promotes tumor cell survival in acidic conditions by preserving ATP levels. J Cell Physiol 228(9):1854–1862. doi:10.1002/jcp.24346

    Article  PubMed  Google Scholar 

  63. Chiche J, Le Fur Y, Vilmen C, et al. (2012) In vivo pH in metabolic-defective ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 130(7):1511–1520. doi:10.1002/ijc.26125

    Article  PubMed  Google Scholar 

  64. Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18(5):330–337. doi:10.1016/j.semcancer.2008.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482. doi:10.1016/j.ccr.2008.05.005

    Article  PubMed  Google Scholar 

  66. Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

    PubMed  Google Scholar 

  67. Kappler M, Rot S, Taubert H, et al. (2007) The effects of knockdown of wild-type survivin, survivin-2B or survivin-3 on the radiosensitization in a soft tissue sarcoma cells in vitro under different oxygen conditions. Cancer Gene Ther 994–1001. doi:10.1038/sj.cgt.7701090

  68. Kappler M, Bache M, Bartel F, et al. (2004) Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther 11(3):186–193. doi:10.1038/sj.cgt.7700677

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues from the Department of Oral and Maxillofacial Plastic Surgery and the Department of Radiotherapy for their continuous support. We thank S. Hanke and Dr. T. Klapperstück for assistance in cell cycle analysis. We would like to thank NPGLE Support Team (Pamela F, Jacqueline C., Man-Tsuey T. and Leann B., Briana V., Denise R.) for providing English language editing for our manuscript. M.K. was supported by the Wilhelm-Roux-Programm of BMBF/NBL3 (FKZ: 21/25, 24/19, 27/22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kappler.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Funding

The work was supported by the Wilhelm-Roux-Programm of BMBF/NBL3 (FKZ: 21/25, 24/19, 27/22).

Informed consent

For this type of study, formal consent was not required.

Additional information

Matthias Kappler, Ulrike Pabst, Dirk Vordermark, and Alexander W. Eckert contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kappler, M., Pabst, U., Rot, S. et al. Normoxic accumulation of HIF1α is associated with glutaminolysis. Clin Oral Invest 21, 211–224 (2017). https://doi.org/10.1007/s00784-016-1780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-1780-9

Keywords

Navigation