Skip to main content
Log in

Intraindividual variation in light-related functional traits: magnitude and structure of leaf trait variability across global scales in Olea europaea trees

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Light-related leaf traits variation is structured among individuals and within individuals in a latitudinal pattern from the equator (high variation) toward the poles (lower variation).

Abstract

Intraspecific variation in leaf functional traits can play a crucial role at multiple ecological scales. However, our understanding of leaf functional trait variation (FV) across spatial scales is limited. Moreover, the influence of FV in specific responses to the environment remains poorly assessed. We investigated FV across multiple nested ecological scales in a set of leaf traits related to light interception and photosynthetic performance in eight populations of Olea europaea trees distributed over a wide latitudinal gradient (~60°). Specifically, we measured SLA, leaf shape, leaf’s spatial position (leaf angles) and leaf’s potential exposure to direct sunlight (silhouette area of the leaf blade and silhouette to area ratio of the leaf blade). The variability in leaf traits revealed two main patterns depending on the considered trait. Differences among sites absorbed >50% of the trait variation related to leaf shape and structure. Conversely, traits related to leaf position and exposure to direct light varied mostly within individuals among crown positions. The variation within trees for multiple traits ranged from 4 to 14%. Trees of equatorial populations had wider, thinner and more exposed leaves to direct light than trees of the remaining populations. The FV for multiple leaf traits at the tree scale was spatially structured within the tree crown and was higher for populations at the equator than for populations located in other latitudes. The differences among traits and scales in the magnitude of FV revealed a complex structure that could be linked to local adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

L azi :

The angle between the projection of a normal vector from the leaf adaxial surface and the true north

L tilt :

The angle of the leaf adaxial surface (0° vertical, +90° horizontal facing upward, −90° horizontal leaf with the adaxial side facing down)

L width :

Maximum leaf width (cm)

L length :

Maximum leaf length (cm)

LDM:

Leaf dry mass (g)

SLA:

Specific leaf area (cm2 g−1)

L index :

L length/L width (dimensionless)

SAL:

Silhouette area of the leaf blade (cm2)

STAR:

Silhouette area to leaf area ratio (%)

SALlow :

Silhouette area of the leaf blade during the day of the year with minimum sun elevation angle at midday for each population (cm2)

SALhigh :

Silhouette area of the leaf blade during the day of the year with maximum sun elevation angle at midday for each population (cm2)

SALmed :

Silhouette area of the leaf blade during a day of the year with sun elevation angle at midday between SALlow and SALhigh for each population (cm2)

STARlow :

Silhouette area to leaf area ratio during the day of the year with minimum sun elevation angle at midday for each population (%)

STARhigh :

Silhouette area to leaf area ratio during the day of the year with maximum sun elevation angle at midday for each population (%)

STARmed :

Silhouette area to leaf area ratio during a day of the year with sun elevation angle at midday between STARlow and STARhigh for each population (%)

FVP :

Functional variance between populations

FVBI :

Functional variance between individuals

FVWI :

Functional variance within individuals

LT:

Leaf variance within trees

LP:

Leaf variance within populations

LS:

Leaf variance within sites

TP:

Tree variance within populations

TS:

Tree variance within sites

References

  • Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010a) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613

    Article  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010b) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct Ecol 24:1192–1201

    Article  Google Scholar 

  • Boege K, Dirzo R (2004) Intraspecific variation in growth, defense and herbivory in Dialium guianense (Caesalpiniaceae) mediated by edaphic heterogeneity. Plant Ecol 175:59–69

    Article  Google Scholar 

  • Booth RE, Grime JP (2003) Effects of genetic impoverishment on plant community diversity. J Ecol 91:721–730

    Article  Google Scholar 

  • Boucher FC, Thuiller W, Arnoldi C, Albert CH, Lavergne S (2013) Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Funct Ecol 27(2):382–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Google Scholar 

  • Carter GA, Smith WK (1985) Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiol 79:1038–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor DJ (2006) Towards optimal designs for hedgerow olive orchards. Crop Pasture Sci 57(10):1067–1072

    Article  Google Scholar 

  • Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ (2006) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313:966–968

    Article  CAS  PubMed  Google Scholar 

  • de Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, Janecek S, Leps J (2010) Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol Evol 2:163–174

    Article  Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Diaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci USA 105:11549–11555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duursma RA, Falster DS, Valladares FV, Sterck J, Pearcy RW, Lusk CH, Sendall KM et al (2012) Light interception efficiency explained by two simple variables: a test using a diversity of small-to medium-sized woody plants. New Phytol 193(2):397–408

    Article  CAS  PubMed  Google Scholar 

  • Escribano-Rocafort AG, Ventre-Lespiaucq AB, Granado-Yela C, López-Pintor A, Delgado JA, Muñoz V, Dorado GA, Balaguer L (2014) Simplifying data acquisition in plant canopies; measurements of leaf angles with a cell-phone. Methods Ecol Evol 5(2):132–140

    Article  Google Scholar 

  • Escribano-Rocafort AG, Ventre-Lespiaucq AB, Granado-Yela C, de Casas RR, Delgado JA, Balaguer L (2016) The expression of light-related leaf functional traits depends on the location of individual leaves within the crown of isolated Olea europaea trees. Ann Bot 117(4):643–651

    Article  PubMed  PubMed Central  Google Scholar 

  • Escudero A, Valladares F (2016) Trait-based plant ecology: moving towards a unifying species coexistence theory. Oecologia 180(4):919–922

    Article  PubMed  Google Scholar 

  • Fajardo A, Siefert A (2016) Phenological variation of leaf functional traits within species. Oecologia 180:951

    Article  PubMed  Google Scholar 

  • Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509–525

    Article  Google Scholar 

  • Futuyma DJ (2009) Natural selection and adaptation. Evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • García-Verdugo C, Méndez M, Velázquez-Rosas N, Balaguer L (2010) Contrasting patterns of morphological and physiological differentiation across insular environments: phenotypic variation and heritability of light-related traits in Olea europaea. Oecologia 164:647–655

    Article  PubMed  Google Scholar 

  • Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001) Consistency of species ranking based on functional leaf traits. New Phytol 152:69–83

    Article  Google Scholar 

  • Gaston KJ (2009) Geographic range limits of species. Proc R Soc B Biol Sci 276(1661):1391–1393

    Article  CAS  Google Scholar 

  • Granado-Yela C, García-Verdugo C, Carrillo K, Rubio de Casas R, Kleczkowski LA, Balaguer L (2011) Temporal matching among diurnal photosynthetic patterns within the crown of the evergreen sclerophyll Olea europaea L. Plant Cell Environ 34(5):800–810

    Article  CAS  PubMed  Google Scholar 

  • Gratani L, Bombelli A (2000) Leaf anatomy, inclination, and gas exchange relationships in evergreen sclerophyllous and drought semideciduous shrub species. Photosynthetica 37(4):573–585

    Article  Google Scholar 

  • Green PS (2002) A revision of Olea L. (Oleaceae). Kew Bull 57:91–140

    Article  Google Scholar 

  • Herrera CM (2009) Multiplicity in unity. Plant subindividual variation and interactions with animals. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Herrera CM, Medrano M, Bazaga P (2015) Continuous within-plant variation as a source of intraspecific functional diversity: patterns, magnitude, and genetic correlates of leaf variability in Helleborus foetidus (Ranunculaceae). Am J Bot 102:225–232

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Howell CJ, Kelly D, Turnbull MH (2002) Moa ghosts exorcised? New Zealand’s divaricate shrubs avoid photoinhibition. Funct Ecol 16:232–240

    Article  Google Scholar 

  • Jurik TW, Chabot JF, Chabot BF (1979) Ontogeny of photosynthetic performance in Fragaria virginiana under changing light regimes. Plant Physiol 63:542–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599

    Article  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12(12):474–478

    Article  CAS  PubMed  Google Scholar 

  • Le Bagousse-Pinguet Y, Börger L, Quéro J-L, Garcia-Gomez M, Soriano S, Maestre FT, Gross N (2015) Traits of neighbouring plants and space limitation determine intraspecific trait variability in semi-arid shrublands. J Ecol 103:1647–1657

    Article  Google Scholar 

  • Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605

    Article  Google Scholar 

  • Marks CO, Lechowicz MJ (2006) Alternative design and the evolution of functional diversity. Am Nat 167:55–66

    Article  PubMed  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185

    Article  PubMed  Google Scholar 

  • Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13(7):838–848

    Article  PubMed  Google Scholar 

  • Niinemets Ü (2015) Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytol 205(1):79–96

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Keenan TF, Hallik L (2014) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993

    Article  PubMed  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. https://www.r-project.org/. Accessed 01 July 2017

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164

    Article  Google Scholar 

  • Roche P, Diaz-Burlinson N, Gachet S (2004) Congruency analysis of species ranking based on leaf traits: which traits are the more reliable? Plant Ecol 174(37):48

    Google Scholar 

  • Rubio de Casas R, Besnard G, Schönswetter P, Balaguer L, Vargas P (2006) Extensive gene flow blurs phylogeographic but not phylogenetic signal in Olea europaea L. Theor Appl Genet 113(4):575–583

    Article  CAS  PubMed  Google Scholar 

  • Rubio de Casas R, Vargas P, Pérez-Corona E, Manrique E, García-Verdugo C, Balaguer L (2011) Sun and shade leaves of Olea europaea respond differently to plant size, light availability and genetic variation. Funct Ecol 25(4):802–812

    Article  Google Scholar 

  • Sack L, Melcher PJ, Liu WH, Middleton E, Pardee T (2006) How strong is intracanopy leaf plasticity in temperate deciduous trees? Am J Bot 93:829–836

    Article  PubMed  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size-asymmetry in competition among plants. Oecologia 113:447–455

    Article  PubMed  Google Scholar 

  • Siefert A (2012) Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia 170:767–775

    Article  PubMed  Google Scholar 

  • Siefert A et al (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18:1406–1419. doi:10.1111/ele.12508

    Article  PubMed  Google Scholar 

  • Smith WK, Hughes NM (2009) Progress in coupling plant form and photosynthetic function. Castanea 74(1):1–26

    Article  Google Scholar 

  • Sultan SE (1987) Evolutionary implications of phenotypic plasticity in plants. Evolutionary biology. Springer, US, pp 127–178

    Chapter  Google Scholar 

  • Trentacoste ER, Connor DJ, Gómez-del-Campo M (2015) Effect of olive hedgerow orientation on vegetative growth, fruit characteristics and productivity. Sci Hortic 192:60–69

    Article  Google Scholar 

  • Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257

    Article  Google Scholar 

  • Vargas P, Muñoz Garmendia F, Hess J, Kadereit JW (2001) Olea europaea ssp guanchica and ssp maroccana (Oleaceae), two new names for olive tree relatives. Anal Jardín Bot Madrid 58:360–361

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892

    Article  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Jiang L, Albert C, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    Article  PubMed  Google Scholar 

  • Walter H (1994) Vegetation of the earth and ecological systems of the geo-biosphere. Springer, Berlin

    Google Scholar 

  • Wilson AJ, Nussey DH (2010) What is individual quality? An evolutionary perspective. Trends Ecol Evol 25(4):207–214

    Article  PubMed  Google Scholar 

  • Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our special thanks go to A. Vázquez, M. Johnson and S. Pichillou for their exceptional assistance in the field and to J. Messier for sharing the R script used for bootstrapping and CI estimations. We are also indebted to the Madrid Regional Govt. [project REMEDINAL 3 (S2013/MAE-2719)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián G. Escribano-Rocafort.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by the Spanish Ministry of Economy (CGL2009-10392, BES-2010-032767 to A.G.E-R).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escribano-Rocafort, A.G., Ventre-Lespiaucq, A.B., Granado-Yela, C. et al. Intraindividual variation in light-related functional traits: magnitude and structure of leaf trait variability across global scales in Olea europaea trees. Trees 31, 1505–1517 (2017). https://doi.org/10.1007/s00468-017-1565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1565-z

Keywords

Navigation