Skip to main content
Log in

The histone acetyltransferase Mof regulates Runx2 and Osterix for osteoblast differentiation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Osteoblast differentiation is regulated by various transcription factors, signaling molecules, and posttranslational modifiers. The histone acetyltransferase Mof (Kat8) is involved in distinct physiological processes. However, the exact role of Mof in osteoblast differentiation and growth remains unknown. Herein, we demonstrated that Mof expression with histone H4K16 acetylation increased during osteoblast differentiation. Inhibition of Mof by siRNA knockdown or small molecule inhibitor, MG149 which is a potent histone acetyltransferase inhibitor, reduced the expression level and transactivation potential of osteogenic key markers, Runx2 and Osterix, thus inhibiting osteoblast differentiation. Besides, Mof overexpression also enhanced the protein levels of Runx2 and Osterix. Mof could directly bind the promoter region of Runx2/Osterix to potentiate their mRNA levels, possibly through Mof-mediated H4K16ac to facilitate the activation of transcriptional programs. Importantly, Mof physically interacts with Runx2/Osterix for the stimulation of osteoblast differentiation. Yet, Mof knockdown showed indistinguishable effect on cell proliferation or apoptosis in MSCs and preosteoblast cells. Taken together, our results uncover Mof functioning as a novel regulator of osteoblast differentiation via the promotional effects on Runx2/Osterix and rationalize Mof as a potential therapeutic target, like possible application of inhibitor MG149 for the treatment of osteosarcoma or developing specific Mof activator to ameliorate osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnsdorf EJ et al (2010) The epigenetic mechanism of mechanically induced osteogenic differentiation. J Biomech 43(15):2881–2886

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley EW et al (2015) Histone deacetylases in bone development and skeletal disorders. Physiol Rev 95(4):1359–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan WCW, Tan Z, To MKT, Chan D (2021) Regulation and role of transcription factors in osteogenesis. Int J Mol Sci 22:5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q et al (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23(7):1128–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dao DY et al (2007) Axin1 and Axin2 are regulated by TGF- and mediate cross-talk between TGF- and Wnt signaling pathways. Ann N Y Acad Sci 1116:82–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou Y et al (2005) Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4K16 acetyltransferase MOF. Cell 121(6):873–885

    Article  CAS  PubMed  Google Scholar 

  • Du JK et al (2020) Osteoblast and osteoclast activity affect bone remodeling upon regulation by mechanical loading-induced leukemia inhibitory factor expression in osteocytes. Front Mol Biosci 7

  • Fan X et al (2004) Regulation of RANKL promoter activity is associated with histone remodeling in murine bone stromal cells. J Cell Biochem 93(4):807–818

    Article  CAS  PubMed  Google Scholar 

  • Gupta A et al (2008) The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 28(1):397–409

    Article  CAS  PubMed  Google Scholar 

  • Hajji N et al (2010) Opposing effects of hMOF and SIRT1 on H4K16 acetylation and the sensitivity to the topoisomerase II inhibitor etoposide. Oncogene 29(15):2192–2204

    Article  CAS  PubMed  Google Scholar 

  • Huynh NC et al (2016) Inhibition of histone deacetylases enhances the osteogenic differentiation of human periodontal ligament cells. J Cell Biochem 117(6):1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95(3):445–453

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V et al (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. P Natl Acad Sci USA 108(30):12325–12330

    Article  CAS  Google Scholar 

  • Li X et al (2012) The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell 11(2):163–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2010) MOF and H4K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 30(22):5335–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XZ et al (2009) Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell 36(2):290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin GL, Hankenson KD (2011) Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 112(12):3491–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HP et al (2016) Destabilization of fatty acid synthase by acetylation inhibits de novo lipogenesis and tumor cell growth. Cancer Res 76(23):6924–6936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H et al (2016) MOF acetylates the histone demethylase LSD1 to suppress epithelial-to- mesenchymal transition. Cell Rep 15(12):2665–2678

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Kobayashi Y, Koide M, Uehara S, Okamoto M, Ishihara A et al (2019) The regulation of bone metabolism and disorders by Wnt signaling. Int J Mol Sci 20:5255

    Article  Google Scholar 

  • Niger C et al (2011) The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter. Bone 49(4):683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Campo FM, Riancho JA (2015) Epigenetic mechanisms regulating mesenchymal stem cell differentiation. Curr Genomics 16(6):368–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder TM et al (2007) Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors. BMC Genomics 8:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J et al (2002) Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones H3 and H4. J Bone Miner Res 17:S439–S439

    Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  • Stein GS et al (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23(24):4315–4329

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Minamide M, Iwaya C, Ogata K, Iwata J (2020) Role of Metabolism in Bone Development and Homeostasis 21(23):8992

    CAS  Google Scholar 

  • Sykes SM et al (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24(6):841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taipale M et al (2005) HMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25(15):6798–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas T et al (2008) Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol 28(16):5093–5105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vimalraj S et al (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208

    Article  CAS  PubMed  Google Scholar 

  • Wang M et al (2021) Lack of MOF decreases susceptibility to hypoxia and promotes multidrug resistance in hepatocellular carcinoma via HIF-1alpha. Front Cell Dev Biol 9:718707

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei S et al (2021) MOF upregulates the estrogen receptor alpha signaling pathway by its acetylase activity in hepatocellular carcinoma. Cancer Sci 112(5):1865–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Chen G, Li YP (2016) TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu XJ et al (2021) SPTBN1 prevents primary osteoporosis by modulating osteoblasts proliferation and differentiation and blood vessels formation in bone. Front Cell Dev Biol 9

  • Yang D et al (2015) Histone demethylase Utx regulates differentiation and mineralization in osteoblasts. J Cell Biochem 116(11):2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Zhang P et al (2016) Histone H3K9 acetyltransferase PCAF is essential for osteogenic differentiation through bone morphogenetic protein signaling and may be involved in osteoporosis. Stem Cells 34(9):2332–2341

    Article  CAS  PubMed  Google Scholar 

  • Zhang R et al (2013) Wnt/beta-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 52(1):145–156

    Article  CAS  PubMed  Google Scholar 

  • Zhu FC et al (2012) The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J Cell Physiol 227(6):2677–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China 2016YFE0129200, National Natural Science Foundation of China (Nos. 31571321, 81601337) and the Natural Science Foundation of Shandong Province, China (No. ZR2022MH003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, X.Z.L. and X.Z.; investigation, J.M.C., D.L., B.C., X.Z., H.Y.Z., and K.L.; methodology, J.M.C., D.L., B.C., Y.Y., D.Y.L., L.N.Z., H.R.L., and M.Q.L.; writing, J.M.C., X.Z., and X.Z.L. All authors have reviewed and approved the manuscript.

Corresponding authors

Correspondence to Xu Zhang or Xiangzhi Li.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 KB)

Supplementary file2 (XLSX 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, D., Chen, B. et al. The histone acetyltransferase Mof regulates Runx2 and Osterix for osteoblast differentiation. Cell Tissue Res 393, 265–279 (2023). https://doi.org/10.1007/s00441-023-03791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03791-5

Keywords

Navigation