Skip to main content

Advertisement

Log in

Prognosis assessment of CD44+/CD24 in breast cancer patients: a systematic review and meta-analysis

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

This meta-analysis investigated the relationships between the CD44+/CD24 phenotype and tumor size, lymph node metastasis, distant metastasis, disease-free survival (DFS), and overall survival (OS) in 8036 postoperative breast cancer patients enrolled in 23 studies.

Methods

A literature search of PubMed, Medline, Cochrane, Embase, and PMC was conducted to identify eligible studies. The combined odds ratios (ORs) and 95% confidence intervals (95% CIs) were analyzed to evaluate the relationships between the CD44+/CD24 phenotype and the pathological and biological characteristics of breast cancer patients, and the combined hazard ratios (HRs) and 95% CIs were calculated to evaluate the relationships between CD44+/CD24 and DFS and OS of breast cancer patients using Stata12.0 software.

Results

The CD44+/CD24 phenotype were not related to the tumor size (tumor size > 2.0 vs ≤ 2.0 cm, combined OR = 0.98, 95% CI 0.68–1.34, p = 0.792) and did not promote lymph node metastasis (lymph node metastasis vs. no lymph node metastasis, OR = 0.92, 95% CI 0.67–1.27, p = 0.626) and distant metastasis (distant metastasis vs no distant metastasis, combined OR = 3.88, 95% CI 0.93–16.24, p = 0.064). The CD44+/CD24 phenotype was negatively correlated with postoperative DFS (HR = 1.67, 95% CI 1.35–2.07, p < 0.00001) and OS (combined HR = 1.52, 95% CI 1.21–1.91, p = 0.0004).

Conclusion

These results suggested expression of the CD44+/CD24 phenotype cannot be used as a reliable indicator of the tumor size, lymph node metastasis, and distant metastasis, however, it can be used be a potential therapeutic targets of DFS, OS in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

I can always upload the data if needed.

Code availability

Stata12.0 and Revman5.3.

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018(68):394–424

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  4. Chen Y, Song J, Jiang Y (2015) Predictive value of CD44 and CD24 for prognosis and chemotherapy response in invasive breast ductal carcinoma. Int J Clin Exp Pathol 8(9):11287–11295

    PubMed  PubMed Central  Google Scholar 

  5. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: modelsand concepts. Annu Rev Med 58:267–284

    Article  CAS  PubMed  Google Scholar 

  6. Shan J, Shen J, Liu L et al (2012) Nanog regulates self-renewal of cancer stem cell through IGF pathway in human hepatocellular carcinoma. Hepatology 56:1004–1014

    Article  CAS  PubMed  Google Scholar 

  7. Dontu G, Al-Hajj M, Abdallah WM et al (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36:59–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hashimoto K, Shimizu C, Tsuda H (2012) Immunohistochemical detection of breast cancer stem cells in hormone receptor-positive breast cancer and their role in response to endocrine therapy and clinical outcome. Oncology 82:168–174

    Article  CAS  PubMed  Google Scholar 

  10. Nogi H (2011) Impact of CD44+/CD24- cells on non-sentinel axillary lymph node metastases in sentinel node-positive breast cancer. Oncol Rep 25:1109–1115

    Article  PubMed  Google Scholar 

  11. Ricardo S, Vieira AF, Gerhard R, Leitao D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F, Paredes J (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64(11):937–946

    Article  PubMed  Google Scholar 

  12. Lee HE, Kim JH, Kim YJ (2011) An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 104(11):1730–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mylona E, Giannopoulou I, Fasomytakis E, Nomikos A, Magkou C, Bakarakos P, Nakopoulou L (2008) The clinicopathologic and prognostic significance of CD44+/CD24(-/low) and CD44−/CD24+ tumor cells in invasive breast carcinomas. Hum Pathol 39(7):1096–1102

    Article  CAS  PubMed  Google Scholar 

  14. Kapucuolu N, Bozkurt KK, Bapinar I et al (2015) The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast CD44/CD24 expression in breast cancer. Res Pract 211:740–747

    Google Scholar 

  15. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:1–16

    Article  Google Scholar 

  16. Parmar MK, Torri V, Stewart L (1998) Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 17:2815–2834

    Article  CAS  PubMed  Google Scholar 

  17. Stang A (2010) Critical evalution of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    Article  PubMed  Google Scholar 

  18. Honeth G, Bendahl P-O, Ringnér M (2008) The CD44+ /CD24 - phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10:R53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Giatromanolaki A, Sivridis E, Fiska A (2011) The CD44+/CD242 phenotype relates to ‘triple-negative’ state and unfavorable prognosis in breast cancer patients. Med Oncol 28:745–752

    Article  CAS  PubMed  Google Scholar 

  20. Reuben JM, Lee B-N, Gao H (2011) Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44 + CD24 lo cancer stem cell phenotype. Eur J Cancer 47(10):1527–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmed MAH, Aleskandarany MA, Rakha EA (2012) A CD44 2 /CD24+ phenotype is a poor prognostic marker in early invasive breast cancer. Breast Cancer Res Treat 133:979–995

    Article  CAS  PubMed  Google Scholar 

  22. Guler G, Balci S, Costinean S (2012) Stem cell-related markers in primary breast cancers and associated metastatic lesions. Modern Pathol 37:1–7

    Google Scholar 

  23. Tsang JYS, Huang Y-H, Luo M-H (2012) Cancer stem cell markers are associated with adverse biomarker profiles and molecular subtypes of breast cancer. Breast Cancer Res Treat 136:407–417

    Article  CAS  PubMed  Google Scholar 

  24. Giordano A, Gao H, Cohen EN (2013) Clinical relevance of cancer stem cells in bone marrow of early breast cancer patients. Ann Oncol 24:2515–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adamczyk A, Niemiec JA, Ambicka A (2014) CD44/CD24 as potential prognostic markers in node-positive invasive ductal breast cancer patients treated with adjuvant chemotherapy. J Mol Hist 45:35–45

    Article  CAS  Google Scholar 

  26. de Mendonca D, Silveira Graudenz M, Callegari-Jacques SM (2014) Expression of cancer stem cell markers in basal and penta-negative breast carcinomas—a study of a series of triple-negative tumors. Pathol Res Pract 210:432–439

    Article  CAS  Google Scholar 

  27. Zhao H, Tang H, Xiao Q (2016) The Hedgehog signaling pathway is associated with poor prognosis in breast cancer patients with the CD44+/CD24 phenotype. Mol Med Rep 14:5261–5270

    Article  CAS  PubMed  Google Scholar 

  28. Bane A, Viloria-Petit A, Pinnaduwage D (2013) Clinical-pathologic significance of cancer stem cell marker expression in familial breast cancers. Breast Cancer Res Treat 140:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seo AN, Lee HJ, Kim EJ (2016) Expression of breast cancer stem cell markers as predictors of prognosis and response to trastuzumab in HER2-positive breast cancer. Br J Cancer 114:1109–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rabinovich I, Martins Sebastião AP, Silveira Lima R. Cancer stem cell mark ALDH1 and CD44+/CD24- phenotype and their progress impact in invasive ductal carcinoma.

  31. Mylona E, Giannopoulou I, Fasomytakis E (2008) The clinicopathologic and prognostic significance of CD44+/CD24-/low and CD44/CD24+ tumor cells in invasive breast carcinomas. Human Pathol 39:1096–1102

    Article  CAS  Google Scholar 

  32. Lin Y, Zhong Y, Guan H (2012) CD44+/CD24- phenotype contributes to malignant relapse following surgical resection and chemotherapy in patients with invasive ductal carcinoma. J Exp Clin Cancer Res 31:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ali HR, Dawson S-J, Blows FM (2011) Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 13:R118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abraham BK, Fritz P, McClellan M (2005) Prevalence of CD44+/CD24/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159

    Article  CAS  PubMed  Google Scholar 

  35. Aulmann S, Waldburger N (2010) Reduction of CD44+/CD24− breast cancer cells by conventional cytotoxic chemotherapy. Human Pathol 41:574–581

    Article  CAS  Google Scholar 

  36. Qiu H, Fang X, Luo Q, Ouyang G (2015) Cancer stem cells: a potential target for cancer therapy. Cell Mol Life Sci 72:3411–3424

    Article  CAS  PubMed  Google Scholar 

  37. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197(4302):461–463

    Article  CAS  PubMed  Google Scholar 

  38. Ali HR, Dawson S-J (2011) Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 13:1–15

    Article  CAS  Google Scholar 

  39. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  40. Hilbe W, Dirnhofer S, Oberwasserlechner F, Schmid T, Gunsilius E, Hilbe G et al (2004) CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol 57:965–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu S, Yu L, Wang D, Zhou L, Cheng Z, Chai D et al (2012) Aberrant expression of CD133 in non-small cell lung cancer and its relationship to vasculogenic mimicry. BMC Cancer 12:535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song Z, Yue W, Wei B, Wang N, Li T, Guan L, Shi S, Zeng Q, Pei X, Chen L (2011) Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS ONE 6:1–13

    Google Scholar 

  43. Ahmed MA, Aleskandarany MA, Rakha EA, Moustafa RZ, Benhasouna A, Nolan C, Green AR, Ilyas M (2011) Ellis IO A CD44(−)/CD24 (+) phenotype is a poor prognostic marker in early invasive breast cancer. Breast Cancer Res Treat 39:1865–1868

    Google Scholar 

  44. Pandit TS, Kennette W, Mackenzie L, Zhang G, Al-Katib W, Andrews J, Vantyghem SA, Ormond DG, Allan AL, Rodenhiser DI, Chambers AF, Tuck AB (2009) Lymphatic metastasis of breast cancer cells is associated with differential gene expression profiles that predict cancer stem cell-like properties and the ability to survive, establish and grow in a foreign environment. Int J Oncol 35:297–308

    CAS  PubMed  Google Scholar 

  45. Kaipparettu BA, Malik S, Konduri SD, Liu W, Rokavec M, Vander Kuip H, Hoppe R, Hammerich-Hille S, Fritz P, Schroth W, Abele I, Das GM, Oesterreich S, Brauch H (2008) Estrogen-mediated downregulation of CD24 in breast cancer cells. Int J Cancer 123:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ricardo S, Vieira AF, Gerhard R et al (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtypes. J Clin Pathol 64:937–946

    Article  PubMed  Google Scholar 

  47. Yu-Chan K, Hack Sun C, Ren L (2020) Inhibitory effects of tangeretin, a citrus peel-derived flavonoid, on breast cancer stem cell formation through suppression of Stat3 signaling. Molecules 25:2599

    Article  CAS  Google Scholar 

  48. Jie B, Wei-Bin C, Xiao-Yu Z (2020) HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J Stem Cells 12:87–99

    Article  Google Scholar 

  49. Walhan A, Alqudah Dana A, Suha W (2019) Downregulation of STAT3, β-catenin, and notch-1 by single and combinations of siRNA treatment enhance chemosensitivity of wild type and doxorubicin resistant MCF7 breast cancer cells to doxorubicin. Int J Mol Sci 20:3696

    Article  CAS  Google Scholar 

  50. Zhou L, Jiang Y, Yan T (2010) The prognostic role of cancer stem cells in breast cancer: a meta-analysis of published literatures. Breast Cancer Res Treat 122:795–801

    Article  PubMed  Google Scholar 

  51. Wang Z, Wang Q (2017) Prognostic significance of CD44 and CD24 in breast cancer: a meta-analysis. Int J Biol Mark 32:75–82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks Jingjing Gu, Dandan Chen, Zhaoming Ma, Guanhong Huang, Zhiqiang Li and Yongliang Yang for their efforts on this article.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Author ZM (Doctoral candidate) and author GH (Doctor) have given substantial contributions to the conception or the design of the manuscript, author JG and author DC to acquisition, analysis and interpretation of the data, author ZL and YY to further review the data. All authors have participated to drafting the manuscript, author ZM and author GH revised it critically. All authors read and approved the final version of the manuscript. All authors contributed equally to the manuscript and read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhaoming Ma or Guanhong Huang.

Ethics declarations

Conflict of interest

We do not have a conflict of interest.

Ethical approval

Patients and the public were not involved in the design or conduct of the study.

Consent to participate

All the authors agreed to participate.

Consent for publication

All the authors agreed to the publishing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Chen, D., Li, Z. et al. Prognosis assessment of CD44+/CD24 in breast cancer patients: a systematic review and meta-analysis. Arch Gynecol Obstet 306, 1147–1160 (2022). https://doi.org/10.1007/s00404-022-06402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06402-w

Keywords

Navigation