Skip to main content

Advertisement

Log in

A review on an effect of dispersant type and medium viscosity on magnetic hyperthermia of nanoparticles

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Recently localized magnetic hyperthermia therapy is zell researched to treat cancer tumor as an independent therapy or an adjunct therapy to increase efficiency of the established radiation-, chemo-, and immuno-therapies. At the heart of the therapy is the generation of controlled heat by superparamagnetic nanoparticles (SPNPs) and their biocompatibility to human tissue and blood. Colloidal SPNPs produce heat under alternate magnetic field by electron magnetic spin relaxation mechanism. Magnetic spins relax through either Néel or Brown or both the mechanism in a nanocolloid. Néel relaxation is predominant in magnetic isotropic SPNPs, and Brown relaxation is predominant in magnetic anisotropic samples. Brown relaxation leads to rotation of whole magnetic nanoparticles under magnetic field to produce heat. Brown relaxation time (τB) strongly depends on hydrodynamic volume of nanoparticles (NPs) and dispersion medium viscosity. As the generation of magnetic hyperthermia power strongly depends on relaxation time, the recent literature is reviewed to understand the effect of dispersant type on hydrodynamic volume of SPNPs and relaxation time, and medium viscosity on relaxation time in nanocolloids. It is observed that dispersants on individual SPNPs increase both colloidal stability and spin relaxation time of NPs resulting in higher specific heat power generation compared to NPs without dispersants. Different amino acids, long-chain steric dispersants, and small-chain zwitterionic surfactants anchored on similar NPs show varied magnetic hyperthermia values due to varied hydrodynamic volume. Medium viscosity also played a significant role on hyperthermia values of NPs. The above characteristics are prominent in anisotropic magnetic materials, including core–shell bimagnetic nanoparticles. This review may help researchers in the field to design and synthesize new hyperthermia materials in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Suriyanto et al. [36]

Fig. 5
Fig. 6
Fig. 7

Adapted from reference [47]

Fig. 8
Fig. 9

adopted from the Department of Inorganic Biomaterials (Kawashita Lab) [206]

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265. https://doi.org/10.1016/j.addr.2008.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196. https://doi.org/10.1016/j.matdes.2017.03.036

    Article  CAS  Google Scholar 

  3. Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials 12(4):617. https://doi.org/10.3390/ma12040617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003

    Article  CAS  Google Scholar 

  5. Zhao S, Yu X, Qian Y, Chen W, Shen J (2020) Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 10(14):6278–6309. https://doi.org/10.7150/thno.42564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility. Pharm Biomed Appl Chem Rev 112(11):5818–5878. https://doi.org/10.1021/cr300068p

    Article  CAS  Google Scholar 

  7. Wei H, Insin N, Lee J, Han H-S, Cordero JM, Liu W, Bawendi MG (2011) Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett 12(1):22–25. https://doi.org/10.1021/nl202721q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coley WB (1891) Contribution to the knowledge of sarcoma. Ann Surg 14:199–220. https://doi.org/10.1097/00000658-189112000-00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chiriac H, Petreus T, Carasevici E, Labusca L, Herea D-D, Danceanu C, Lupu N (2015) In vitro cytotoxicity of Fe–Cr–Nb–B magnetic nanoparticles under high frequency electromagnetic field. J Magn Magn Mater 380:13–19. https://doi.org/10.1016/j.jmmm.2014.10.015

    Article  CAS  Google Scholar 

  10. Hervault A, Thanh NTK (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6(20):11553–11573. https://doi.org/10.1039/c4nr03482a

    Article  CAS  PubMed  Google Scholar 

  11. Vilas-Boas V, Carvalho F, Espiña B (2020) Magnetic hyperthermia for cancer treatment: main parameters affecting the outcome of in vitro and in vivo studies. Molecules 25(12):2874. https://doi.org/10.3390/molecules25122874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ling W, Wang M, Xiong C, Xie D, Chen Q, Chu X, Xiao X (2019) Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J Mater Res 34(11):1828–1844. https://doi.org/10.1557/jmr.2019.129

    Article  CAS  Google Scholar 

  13. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146(4):596–606. https://doi.org/10.1097/00000658-195710000-00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jordan A, Wust P, Fählin H, John W, Hinz A, Felix R (1993) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperth 9(1):51–68. https://doi.org/10.3109/02656739309061478

    Article  CAS  Google Scholar 

  15. Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201(1–3):413–419. https://doi.org/10.1016/s0304-8853(99)00088-8

    Article  CAS  Google Scholar 

  16. Chang D, Lim M, Goos JACM, Qiao R, Ng YY, Mansfeld FM, Kavallaris M (2018) Biologically targeted magnetic hyperthermia: potential and limitations. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00831

    Article  PubMed  PubMed Central  Google Scholar 

  17. Johannsen M, Gneveckow U, Eckelt L, Feussner A, WaldÖFner N, Scholz R, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperth 21(7):637–647. https://doi.org/10.1080/02656730500158360

    Article  CAS  Google Scholar 

  18. Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Loening SA (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperth 23(3):315–323. https://doi.org/10.1080/02656730601175479

    Article  CAS  Google Scholar 

  19. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52(6):1653–1662. https://doi.org/10.1016/j.eururo.2006.11.023

    Article  PubMed  Google Scholar 

  20. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Jordan A (2010) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324. https://doi.org/10.1007/s11060-010-0389-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spirou S, Basini M, Lascialfari A, Sangregorio C, Innocenti C (2018) Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice †. Nanomaterials 8(6):401. https://doi.org/10.3390/nano8060401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Liang X-J (2020) Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10(8):3793–3815. https://doi.org/10.7150/thno.40805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raouf I, Khalid S, Khan A, Lee J, Kim HS, Kim M-H (2020) A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. J Therm Biol 91:102644. https://doi.org/10.1016/j.jtherbio.2020.102644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alumutairi L, Yu B, Filka M, Nayfach J, Kim M-H (2020) Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Staphylococcus aureus biofilm to antibiotics. Int J Hyperth 37(1):66–75. https://doi.org/10.1080/02656736.2019.1707886

    Article  CAS  Google Scholar 

  25. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Jordan A (2006) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81(1):53–60. https://doi.org/10.1007/s11060-006-9195-0

    Article  CAS  PubMed  Google Scholar 

  26. Lepock JR (2004) Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int J Hyperth 20(2):115–130. https://doi.org/10.1080/02656730310001637334

    Article  CAS  Google Scholar 

  27. Raaphorst GP (1999) Thermal radiosensitization and repair inhibition in human melanoma cells: a comparison of survival and DNA double strand breaks. Int J Hyperth 15(1):17–27. https://doi.org/10.1080/026567399285828

    Article  CAS  Google Scholar 

  28. Coss RA, Linnemans WAM (1996) The effects of hyperthermia on the cytoskeleton: a review. Int J Hyperth 12(2):173–196. https://doi.org/10.3109/02656739609022507

    Article  CAS  Google Scholar 

  29. Evans SS, Repasky EA, Fisher DT (2015) Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 15(6):335–349. https://doi.org/10.1038/nri3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yagawa Y, Tanigawa K, Kobayashi Y, Yamamoto M (2017) Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J Cancer Metastasis Treatment 3(10):218. https://doi.org/10.20517/2394-4722.2017.35

    Article  CAS  Google Scholar 

  31. Mondal S, Manivasagan P, Bharathiraja S, Santha Moorthy M, Nguyen V, Kim H, Oh J (2017) Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia cancer treatment. Nanomaterials 7(12):426. https://doi.org/10.3390/nano7120426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirschning A, Kupracz L, Hartwig J (2012) New synthetic opportunities in miniaturized flow reactors with inductive heating. Chem Lett 41(6):562–570. https://doi.org/10.1246/cl.2012.562

    Article  CAS  Google Scholar 

  33. Houlding TK, Rebrov EV (2012) Application of alternative energy forms in catalytic reactor engineering. Green Process Synthesis. https://doi.org/10.1515/greenps-2011-0502

    Article  Google Scholar 

  34. Torres TE, Lima E, Calatayud MP, Sanz B, Ibarra A, Fernández-Pacheco R, Goya GF (2019) The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Scientif Rep. https://doi.org/10.1038/s41598-019-40341-y

    Article  Google Scholar 

  35. Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji K, Jeyadevan B (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321(10):1493–1496. https://doi.org/10.1016/j.jmmm.2009.02.070

    Article  CAS  Google Scholar 

  36. Suriyanto NG, Kumar SD (2017) Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. BioMed Eng Online. https://doi.org/10.1186/s12938-017-0327-x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andrade ÂL, Cavalcante LCD, Fabris JD, Pereira MC, Fernandez-Outon LE, Pedersoli DC, Ferreira JMF (2020) Magnetically induced heating by iron oxide nanoparticles dispersed in liquids of different viscosities. Ceram Int 46(13):21496–21504. https://doi.org/10.1016/j.ceramint.2020.05.249

    Article  CAS  Google Scholar 

  38. CHENG, F. (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26(7):729–738. https://doi.org/10.1016/j.biomaterials.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  39. Gawali SL, Shelar SB, Gupta J, Barick KC, Hassan PA (2021) Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application. Int J Biol Macromol 166:851–860. https://doi.org/10.1016/j.ijbiomac.2020.10.241

    Article  CAS  PubMed  Google Scholar 

  40. Tansi FL, Fröbel F, Maduabuchi WO, Steiniger F, Westermann M, Quaas R, Hilger I (2021) Effect of matrix-modulating enzymes on the cellular uptake of magnetic nanoparticles and on magnetic hyperthermia treatment of pancreatic cancer models in vivo. Nanomaterials 11(2):438. https://doi.org/10.3390/nano11020438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperth 26(8):790–795. https://doi.org/10.3109/02656731003745740

    Article  Google Scholar 

  42. Olson B, Li Y, Lin Y, Liu ET, Patnaik A (2018) Mouse models for cancer immunotherapy research. Cancer Discov 8(11):1358–1365. https://doi.org/10.1158/2159-8290.cd-18-0044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Che Rose L, Bear JC, McNaughter PD, Southern P, Piggott RB, Parkin IP, Mayes AG (2016) A SPION-eicosane protective coating for water soluble capsules: Evidence for on-demand drug release triggered by magnetic hyperthermia. Scientif Rep. https://doi.org/10.1038/srep20271

    Article  Google Scholar 

  44. Sengupta S, Balla VK (2018) A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J Adv Res 14:97–111. https://doi.org/10.1016/j.jare.2018.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhardwaj A, Parekh K, Jain N (2020) In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Scientif Rep 10:1. https://doi.org/10.1038/s41598-020-71552-3

    Article  CAS  Google Scholar 

  46. Parekh K, Bhardwaj A, Jain N (2020) Preliminary in-vitro investigation of magnetic fluid hyperthermia in cervical cancer cells. J Magn Magn Mater 497:166057. https://doi.org/10.1016/j.jmmm.2019.166057

    Article  CAS  Google Scholar 

  47. Skandalakis GP, Rivera DR, Rizea CD, Bouras A, Jesu Raj JG, Bozec D, Hadjipanayis CG (2020) Hyperthermia treatment advances for brain tumors. Int J Hyperth 37(2):3–19. https://doi.org/10.1080/02656736.2020.1772512

    Article  CAS  Google Scholar 

  48. Sadhasivam J, Sugumaran A (2020) Magnetic nanocarriers: emerging tool for the effective targeted treatment of lung cancer. J Drug Deliv Sci Technol 55:101493. https://doi.org/10.1016/j.jddst.2019.101493

    Article  CAS  Google Scholar 

  49. Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, Gun’ko YK (2013) Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 11(1):1. https://doi.org/10.1186/1477-3155-11-1

    Article  CAS  Google Scholar 

  50. Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21):5163–5171. https://doi.org/10.1016/j.biomaterials.2013.03.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kandasamy G, Sudame A, Luthra T, Saini K, Maity D (2018) Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega 3(4):3991–4005. https://doi.org/10.1021/acsomega.8b00207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pazos-Perez N, Pazos E, Catala C, Mir-Simon B, Gómez-de Pedro S, Sagales J, Alvarez-Puebla RA (2016) Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. Scientif Rep. https://doi.org/10.1038/srep29014

    Article  Google Scholar 

  53. Liao H, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17(18):4636–4641. https://doi.org/10.1021/cm050935k

    Article  CAS  Google Scholar 

  54. Rahme K, Nolan MT, Doody T, McGlacken GP, Morris MA, O’Driscoll C, Holmes JD (2013) Highly stable PEGylated gold nanoparticles in water: applications in biology and catalysis. RSC Adv 3(43):21016. https://doi.org/10.1039/c3ra41873a

    Article  CAS  Google Scholar 

  55. Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166. https://doi.org/10.1002/adma.200701975

    Article  CAS  Google Scholar 

  56. Duan H, Nie S (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129(11):3333–3338. https://doi.org/10.1021/ja068158s

    Article  CAS  PubMed  Google Scholar 

  57. Voliani V, Luin S, Ricci F, Beltram F (2010) Single-step bifunctional coating for selectively conjugable nanoparticles. Nanoscale 2(12):2783. https://doi.org/10.1039/c0nr00350f

    Article  CAS  PubMed  Google Scholar 

  58. Guerrini L, Alvarez-Puebla R, Pazos-Perez N (2018) Surface Modifications of nanoparticles for stability in biological fluids. Materials 11(7):1154. https://doi.org/10.3390/ma11071154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boles MA, Ling D, Hyeon T, Talapin DV (2016) The surface science of nanocrystals. Nat Mater 15(2):141–153. https://doi.org/10.1038/nmat4526

    Article  CAS  PubMed  Google Scholar 

  60. Patil RM, Thorat ND, Shete PB, Otari SV, Tiwale BM, Pawar SH (2016) In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures. Mater Sci Eng, C 59:702–709. https://doi.org/10.1016/j.msec.2015.10.064

    Article  CAS  Google Scholar 

  61. Salunkhe AB, Khot VM, Ruso JM, Patil SI (2016) Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 419:533–542. https://doi.org/10.1016/j.jmmm.2016.06.057

    Article  CAS  Google Scholar 

  62. Goswami MM, Dey C, Bandyopadhyay A, Sarkar D, Ahir M (2016) Micelles driven magnetite (Fe3O4) hollow spheres and a study on AC magnetic properties for hyperthermia application. J Magn Magn Mater 417:376–381. https://doi.org/10.1016/j.jmmm.2016.05.069

    Article  CAS  Google Scholar 

  63. Reyes-Ortega F, Checa Fernández BL, Delgado AV, Iglesias GR (2019) Hyperthermia-triggered doxorubicin release from polymer-coated magnetic nanorods. Pharmaceutics 11(10):517. https://doi.org/10.3390/pharmaceutics11100517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shete PB, Patil RM, Thorat ND, Prasad A, Ningthoujam RS, Ghosh SJ, Pawar SH (2014) Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl Surf Sci 288:149–157. https://doi.org/10.1016/j.apsusc.2013.09.169

    Article  CAS  Google Scholar 

  65. Oh Y, Lee N, Kang HW, Oh J (2016) In vitrostudy on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4. Nanotechnology 27(11):115101. https://doi.org/10.1088/0957-4484/27/11/115101

    Article  CAS  PubMed  Google Scholar 

  66. Prakash KASSP, Nishad KV, Komath M, Nair BN (2020) Amino acid inspired tunable superparamagnetic iron oxide (SPION) nanostructures with high magnetic hyperthermia potential for biofunctional applications. New J Chem 44(5):1962–1970. https://doi.org/10.1039/c9nj05343c

    Article  CAS  Google Scholar 

  67. Salimi M, Sarkar S, Saber R, Delavari H, Alizadeh AM, Mulder HT (2018) Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles. Cancer Nanotechnol. https://doi.org/10.1186/s12645-018-0042-8

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sarma L, Borah JP, Srinivasan A, Sarma S (2019) Synthesis and characterization of tea polyphenol-coated magnetite nanoparticles for hyperthermia application. J Supercond Novel Magn 33(6):1637–1644. https://doi.org/10.1007/s10948-019-05189-3

    Article  CAS  Google Scholar 

  69. Hatamie S, Parseh B, Ahadian MM, Naghdabadi F, Saber R, Soleimani M (2018) Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: In vitro cellular study. J Magn Magn Mater 462:185–194. https://doi.org/10.1016/j.jmmm.2018.05.020

    Article  CAS  Google Scholar 

  70. Coffey WT, Crothers DSF, Kalmykov YP, Waldron JT (1995) Constant-magnetic-field effect in Néel relaxation of single-domain ferromagnetic particles. Phys Rev B 51(22):15947–15956. https://doi.org/10.1103/physrevb.51.15947

    Article  CAS  Google Scholar 

  71. Attar MM, Haghpanahi M, Shahverdi H, Imam A (2016) Thermo-mechanical analysis of soft tissue in local hyperthermia treatment. J Mech Sci Technol 30(3):1459–1469. https://doi.org/10.1007/s12206-015-1053-6

    Article  Google Scholar 

  72. Thorat ND, Lemine OM, Bohara RA, Omri K, El Mir L, Tofail SAM (2016) Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys 18(31):21331–21339. https://doi.org/10.1039/c6cp03430f

    Article  CAS  PubMed  Google Scholar 

  73. Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21(35):13388. https://doi.org/10.1039/c1jm10092k

    Article  CAS  Google Scholar 

  74. Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC (2011) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32(7):1890–1905. https://doi.org/10.1016/j.biomaterials.2010.11.028

    Article  CAS  PubMed  Google Scholar 

  75. Zargar T, Kermanpur A, Labbaf S, Houreh AB, Esfahani MHN (2018) PEG coated Zn0.3Fe2.7O4 nanoparticles in the presence of <alpha>Fe2O3 phase synthesized by citric acid assisted hydrothermal reduction process for magnetic hyperthermia applications. Mater Chem Phys 212:432–439. https://doi.org/10.1016/j.matchemphys.2018.03.054

    Article  CAS  Google Scholar 

  76. Wydra RJ, Kruse AM, Bae Y, Anderson KW, Hilt JZ (2013) Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy. Mater Sci Eng, C 33(8):4660–4666. https://doi.org/10.1016/j.msec.2013.07.019

    Article  CAS  Google Scholar 

  77. Von Rybinski W (1996) Alkyl glycosides and polyglycosides. Curr Opin Colloid Interface Sci 1(5):587–597. https://doi.org/10.1016/s1359-0294(96)80096-3

    Article  Google Scholar 

  78. Söderberg I, Drummond CJ, Neil Furlong D, Godkin S, Matthews B (1995) Non-ionic sugar-based surfactants: Self assembly and air/water interfacial activity. Colloids Surf, A 102:91–97. https://doi.org/10.1016/0927-7757(95)03250-h

    Article  Google Scholar 

  79. Linh PH, Anh NTN, Nam PH, Bach TN, Lam VD, Manh DH (2018) A facile ultrasound assisted synthesis of dextran-stabilized Co0.2Fe0.8Fe2O4 nanoparticles for hyperthermia application. IEEE Trans Magn 54(6):1–4. https://doi.org/10.1109/tmag.2018.2815080

    Article  CAS  Google Scholar 

  80. Predescu AM, Matei E, Berbecaru AC, Pantilimon C, Drăgan C, Vidu R, Kuncser V (2018) Synthesis and characterization of dextran-coated iron oxide nanoparticles. R Soc Open Sci 5(3):171525. https://doi.org/10.1098/rsos.171525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. El-Boubbou K, Zhu DC, Vasileiou C, Borhan B, Prosperi D, Li W, Huang X (2010) Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J Am Chem Soc 132(12):4490–4499. https://doi.org/10.1021/ja100455c

    Article  CAS  PubMed  Google Scholar 

  82. Marradi M, García I, Penadés S (2011) Carbohydrate-based nanoparticles for potential applications in medicine. Nanoparticles Transl Sci Med. https://doi.org/10.1016/b978-0-12-416020-0.00004-8

    Article  Google Scholar 

  83. Ban Z, Bosques CJ, Sasisekharan R (2008) A simple assay to probe disease-associated enzyme activity using glycosaminoglycan-assisted synthesized gold nanoparticles. Org Biomol Chem 6(23):4290. https://doi.org/10.1039/b813210k

    Article  CAS  PubMed  Google Scholar 

  84. Kamat M, El-Boubbou K, Zhu DC, Lansdell T, Lu X, Li W, Huang X (2010) Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug Chem 21(11):2128–2135. https://doi.org/10.1021/bc100354m

    Article  CAS  PubMed  Google Scholar 

  85. Nath S, Kaittanis C, Tinkham A, Perez JM (2008) Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal Chem 80(4):1033–1038. https://doi.org/10.1021/ac701969u

    Article  CAS  PubMed  Google Scholar 

  86. Mohammadi F, Moeeni M, Li C, Boukherroub R, Szunerits S (2020) Interaction of cellulose and nitrodopamine coated superparamagnetic iron oxide nanoparticles with alpha-lactalbumin. RSC Adv 10(16):9704–9716. https://doi.org/10.1039/c9ra09045b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu T, Bai R, Zhou H, Wang R, Liu J, Zhao Y, Chen C (2020) The effect of size and surface ligands of iron oxide nanoparticles on blood compatibility. RSC Adv 10(13):7559–7569. https://doi.org/10.1039/c9ra10969b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dabbagh A, Hedayatnasab Z, Karimian H, Sarraf M, Yeong CH, Madaah Hosseini HR, Rahman NA (2018) Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. Int J Hyperth 36(1):104–114. https://doi.org/10.1080/02656736.2018.1536809

    Article  CAS  Google Scholar 

  89. Sherwood J, Xu Y, Lovas K, Qin Y, Bao Y (2017) Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities. J Magn Magn Mater 427:220–224. https://doi.org/10.1016/j.jmmm.2016.10.039

    Article  CAS  Google Scholar 

  90. Yu B, Liu J, Liu S, Zhou F (2010) Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem Commun 46(32):5900. https://doi.org/10.1039/c0cc00596g

    Article  CAS  Google Scholar 

  91. Gu X, Zhang Y, Sun H, Song X, Fu C, Dong P (2015) Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. J Nanomater 2015:1–12. https://doi.org/10.1155/2015/154592

    Article  CAS  Google Scholar 

  92. Wu Y, Lu Z, Li Y, Yang J, Zhang X (2020) Surface modification of iron oxide-based magnetic nanoparticles for cerebral theranostics: application and prospection. Nanomaterials 10(8):1441. https://doi.org/10.3390/nano10081441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Patitsa M, Karathanou K, Kanaki Z, Tzioga L, Pippa N, Demetzos C, Klinakis A (2017) Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Scientif Rep. https://doi.org/10.1038/s41598-017-00836-y

    Article  Google Scholar 

  94. Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, Taratula O (2019) Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano 13(6):6383–6395. https://doi.org/10.1021/acsnano.8b06542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vijayan VM, Beeran AE, Shenoy SJ, Muthu J, Thomas V (2019) New magneto-fluorescent hybrid polymer nanogel for theranostic applications. ACS Appl Bio Mater 2(2):757–768. https://doi.org/10.1021/acsabm.8b00616

    Article  CAS  PubMed  Google Scholar 

  96. Wei H, Bruns OT, Chen O, Bawendi MG (2012) Compact zwitterion-coated iron oxide nanoparticles for in vitro and in vivo imaging. Integr Biol 5(1):108–114. https://doi.org/10.1039/c2ib20142a

    Article  CAS  Google Scholar 

  97. Mondini S, Leonzino M, Drago C, Ferretti AM, Usseglio S, Maggioni D, Ponti A (2015) Zwitterion-coated iron oxide nanoparticles: surface chemistry and intracellular uptake by hepatocarcinoma (HepG2) cells. Langmuir 31(26):7381–7390. https://doi.org/10.1021/acs.langmuir.5b01496

    Article  CAS  PubMed  Google Scholar 

  98. Xiao W, Lin J, Li M, Ma Y, Chen Y, Zhang C, Gu H (2012) Prolonged in vivo circulation time by zwitterionic modification of magnetite nanoparticles for blood pool contrast agents. Contrast Media Mol Imag 7(3):320–327. https://doi.org/10.1002/cmmi.501

    Article  CAS  Google Scholar 

  99. Pombo-García K, Weiss S, Zarschler K, Ang C, Hübner R, Pufe J, Graham B (2016) Zwitterionic polymer-coated ultrasmall superparamagnetic iron oxide nanoparticles with low protein interaction and high biocompatibility. ChemNanoMat 2(10):959–971. https://doi.org/10.1002/cnma.201600233

    Article  CAS  Google Scholar 

  100. Ma D, Chen J, Luo Y, Wang H, Shi X (2017) Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T1-weighted magnetic resonance imaging applications. J Mater Chem B 5(35):7267–7273. https://doi.org/10.1039/c7tb01588g

    Article  CAS  PubMed  Google Scholar 

  101. Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, Bawendi MG (2017) Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci 114(9):2325–2330. https://doi.org/10.1073/pnas.1620145114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Iacovita C, Florea A, Scorus L, Pall E, Dudric R, Moldovan AI, Lucaciu CM (2019) Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. Nanomaterials 9(10):1489. https://doi.org/10.3390/nano9101489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barra A, Alves Z, Ferreira NM, Martins MA, Oliveira H, Ferreira LP, Ferreira P (2020) Biocompatible chitosan-based composites with properties suitable for hyperthermia therapy. J Mater Chem B 8(6):1256–1265. https://doi.org/10.1039/c9tb02067e

    Article  CAS  PubMed  Google Scholar 

  104. Hoque SM, Huang Y, Cocco E, Maritim S, Santin AD, Shapiro EM, Hyder F (2016) Improved specific loss power on cancer cells by hyperthermia and MRI contrast of hydrophilic FexCo1-xFe2O4nanoensembles. Contrast Media Mol Imag 11(6):514–526. https://doi.org/10.1002/cmmi.1713

    Article  CAS  Google Scholar 

  105. Ferjaoui Z, Jamal Al Dine E, Kulmukhamedova A, Bezdetnaya L, Soon Chang C, Schneider R, Alem H (2019) Doxorubicin-loaded thermoresponsive superparamagnetic nanocarriers for controlled drug delivery and magnetic hyperthermia applications. ACS Appl Mater Interfaces 11(34):30610–30620. https://doi.org/10.1021/acsami.9b10444

    Article  CAS  PubMed  Google Scholar 

  106. Zhu N, Ji H, Shen C, Wu J, Niu J, Yang J, Niu X (2019) Study of alternating magnetic heating characteristics of mnzn ferrite nanoparticles for magnetic hyperthermia applications. IEEE Trans Appl Supercond 29(2):1–5. https://doi.org/10.1109/tasc.2018.2882416

    Article  CAS  Google Scholar 

  107. Piazza RD, Viali WR, dos Santos CC, Nunes ES, Marques RFC, Morais PC, Jafelicci M (2020) PEGlatyon-SPION surface functionalization with folic acid for magnetic hyperthermia applications. Mater Res Expr 7(1):015078. https://doi.org/10.1088/2053-1591/ab6700

    Article  CAS  Google Scholar 

  108. Fotukian SM, Barati A, Soleymani M, Alizadeh AM (2020) Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J Alloy Compd 816:152548. https://doi.org/10.1016/j.jallcom.2019.152548

    Article  CAS  Google Scholar 

  109. Hedayatnasab Z, Dabbagh A, Abnisa F, Wan Daud WMA (2020) Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. Eur Polymer J 133:109789. https://doi.org/10.1016/j.eurpolymj.2020.109789

    Article  CAS  Google Scholar 

  110. Reyes-Ortega F, Delgado Á, Schneider E, Checa Fernández B, Iglesias G (2017) Magnetic nanoparticles coated with a thermosensitive polymer with hyperthermia properties. Polymers 10(1):10. https://doi.org/10.3390/polym10010010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B, Jiang S (2010) Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials 31(25):6582–6588. https://doi.org/10.1016/j.biomaterials.2010.05.018

    Article  CAS  PubMed  Google Scholar 

  112. Wei R, Gong X, Lin H, Zhang K, Li A, Liu K, Gao J (2019) Versatile octapod-shaped hollow porous manganese(II) oxide nanoplatform for real-time visualization of cargo delivery. Nano Lett 19(8):5394–5402. https://doi.org/10.1021/acs.nanolett.9b01900

    Article  CAS  PubMed  Google Scholar 

  113. Li H, Han J, Liang G (2020) Phase transfer of hydrophobic nanoparticles using a zwitterionic sulfobetaine siloxane generates highly biocompatible and compact surfaces. ACS Appl Nano Mater 3(2):1489–1496. https://doi.org/10.1021/acsanm.9b02306

    Article  CAS  Google Scholar 

  114. Malisova B, Tosatti S, Textor M, Gademann K, Zürcher S (2010) Poly(ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability. Langmuir 26(6):4018–4026. https://doi.org/10.1021/la903486z

    Article  CAS  PubMed  Google Scholar 

  115. Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8(9):38–46. https://doi.org/10.1016/s1369-7021(05)71079-8

    Article  CAS  Google Scholar 

  116. Zhou M, Luo G, Zhang Z, Li S, Wang C (2017) Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl. J Mol Struct 1144:199–205. https://doi.org/10.1016/j.molstruc.2017.05.023

    Article  CAS  Google Scholar 

  117. Ayranci E, Duman O (2007) Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy. J Hazard Mater 148(1–2):75–82. https://doi.org/10.1016/j.jhazmat.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  118. Duman O, Ayranci E (2010) Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy. J Hazard Mater 174(1–3):359–367. https://doi.org/10.1016/j.jhazmat.2009.09.058

    Article  CAS  PubMed  Google Scholar 

  119. Tunç S, Duman O (2007) Investigation of interactions between some anionic dyes and cationic surfactants by conductometric method. Fluid Phase Equilib 251(1):1–7. https://doi.org/10.1016/j.fluid.2006.10.020

    Article  CAS  Google Scholar 

  120. Yoshimura T, Nyuta K, Esumi K (2005) Zwitterionic heterogemini surfactants containing ammonium and carboxylate headgroups 1 adsorption and micellization. Langmuir 21(7):2682–2688. https://doi.org/10.1021/la047773b

    Article  CAS  PubMed  Google Scholar 

  121. Yaseen M, Wang Y, Su TJ, Lu JR (2005) Surface adsorption of zwitterionic surfactants: n-alkyl phosphocholines characterised by surface tensiometry and neutron reflection. J Colloid Interface Sci 288(2):361–370. https://doi.org/10.1016/j.jcis.2005.03.024

    Article  CAS  PubMed  Google Scholar 

  122. Zhou M, Zhao J, Hu X (2011) Synthesis of Bis[N, N′-(alkylamideethyl)ethyl] triethylenediamine bromide surfactants and their oilfield application investigation. J Surfactants Deterg 15(3):309–315. https://doi.org/10.1007/s11743-011-1313-0

    Article  CAS  Google Scholar 

  123. Geng XF, Hu XQ, Jia XC, Luo LJ (2013) Effects of sodium salicylate on the microstructure of a novel zwitterionic gemini surfactant and its rheological responses. Colloid Polym Sci 292(4):915–921. https://doi.org/10.1007/s00396-013-3137-0

    Article  CAS  Google Scholar 

  124. Raviv U, Giasson S, Kampf N, Gohy J-F, Jérôme R, Klein J (2003) Lubrication by charged polymers. Nature 425(6954):163–165. https://doi.org/10.1038/nature01970

    Article  CAS  PubMed  Google Scholar 

  125. Wu P, Grainger DW (2006) Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 27(11):2450–2467. https://doi.org/10.1016/j.biomaterials.2005.11.031

    Article  CAS  PubMed  Google Scholar 

  126. Valsesia A, Colpo P, Manso Silvan M, Meziani T, Ceccone G, Rossi F (2004) Fabrication of nanostructured polymeric surfaces for biosensing devices. Nano Lett 4(6):1047–1050. https://doi.org/10.1021/nl0496567

    Article  CAS  Google Scholar 

  127. Chae KH, Jang YM, Kim YH, Sohn O-J, Rhee JI (2007) Anti-fouling epoxy coatings for optical biosensor application based on phosphorylcholine. Sens Actuators, B Chem 124(1):153–160. https://doi.org/10.1016/j.snb.2006.12.012

    Article  CAS  Google Scholar 

  128. Lee JH, Ju YM, Kim DM (2000) Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers. Biomaterials 21(7):683–691. https://doi.org/10.1016/s0142-9612(99)00197-0

    Article  CAS  PubMed  Google Scholar 

  129. Advincula RC (2003) Surface initiated polymerization from nanoparticle surfaces. J Dispersion Sci Technol 24(3–4):343–361. https://doi.org/10.1081/dis-120021794

    Article  CAS  Google Scholar 

  130. Rundqvist J, Hoh JH, Haviland DB (2005) Poly(ethylene glycol) self-assembled monolayer island growth. Langmuir 21(7):2981–2987. https://doi.org/10.1021/la0471792

    Article  CAS  PubMed  Google Scholar 

  131. Senaratne W, Andruzzi L, Ober CK (2005) Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromol 6(5):2427–2448. https://doi.org/10.1021/bm050180a

    Article  CAS  Google Scholar 

  132. Konradi R, Pidhatika B, Mühlebach A, Textor M (2008) Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir 24(3):613–616. https://doi.org/10.1021/la702917z

    Article  CAS  PubMed  Google Scholar 

  133. Rovira-Bru M, Giralt F, Cohen Y (2001) Protein adsorption onto zirconia modified with terminally grafted polyvinylpyrrolidone. J Colloid Interface Sci 235(1):70–79. https://doi.org/10.1006/jcis.2000.7355

    Article  CAS  PubMed  Google Scholar 

  134. Ruegsegger MA, Marchant RE (2001) Reduced protein adsorption and platelet adhesion by controlled variation of oligomaltose surfactant polymer coatings. J Biomed Mater Res 56(2):159–167. https://doi.org/10.1002/1097-4636(200108)56:2%3c159::AID-JBM1080%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  135. Lewis AL, Tolhurst LA, Stratford PW (2002) Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation. Biomaterials 23(7):1697–1706. https://doi.org/10.1016/s0142-9612(01)00297-6

    Article  CAS  PubMed  Google Scholar 

  136. Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127(22):7972–7973. https://doi.org/10.1021/ja0522534

    Article  CAS  PubMed  Google Scholar 

  137. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102(11):4177–4190. https://doi.org/10.1021/cr020371t

    Article  CAS  PubMed  Google Scholar 

  138. Zhang Z, Chao T, Chen S, Jiang S (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22(24):10072–10077. https://doi.org/10.1021/la062175d

    Article  CAS  PubMed  Google Scholar 

  139. Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170. https://doi.org/10.1038/nbt1340

    Article  CAS  Google Scholar 

  140. Radziuk D, Skirtach A, Sukhorukov G, Shchukin D, Möhwald H (2007) Stabilization of Silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol Rapid Commun 28(7):848–855. https://doi.org/10.1002/marc.200600895

    Article  CAS  Google Scholar 

  141. Bakandritsos A, Psarras GC, Boukos N (2008) Some Physicochemical aspects of nanoparticulate magnetic iron oxide colloids in neat water and in the presence of Poly(vinyl alcohol). Langmuir 24(20):11489–11496. https://doi.org/10.1021/la801901j

    Article  CAS  PubMed  Google Scholar 

  142. Estephan ZG, Schlenoff PS, Schlenoff JB (2011) Zwitteration as an alternative to pegylation. Langmuir 27(11):6794–6800. https://doi.org/10.1021/la200227b

    Article  CAS  PubMed  Google Scholar 

  143. Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30(32):9625–9636. https://doi.org/10.1021/la500057j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147. https://doi.org/10.1021/ja2084338

    Article  CAS  PubMed  Google Scholar 

  145. García KP, Zarschler K, Barbaro L, Barreto JA, O’Malley W, Spiccia L, Graham B (2014) Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529. https://doi.org/10.1002/smll.201303540

    Article  CAS  Google Scholar 

  146. Kane RS, Deschatelets P, Whitesides GM (2003) Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19(6):2388–2391. https://doi.org/10.1021/la020737x

    Article  CAS  Google Scholar 

  147. Kim JC, Kim M, Jung J, Kim H, Kim IJ, Kim JR, Ree M (2012) Biocompatible characteristics of sulfobetaine-containing brush polymers. Macromol Res 20(7):746–753. https://doi.org/10.1007/s13233-012-0099-x

    Article  CAS  Google Scholar 

  148. Schlenoff JB, Rmaile AH, Bucur CB (2008) Hydration Contributions to association in polyelectrolyte multilayers and complexes: visualizing hydrophobicity. J Am Chem Soc 130(41):13589–13597. https://doi.org/10.1021/ja802054k

    Article  CAS  PubMed  Google Scholar 

  149. Zhang Z, Vaisocherová H, Cheng G, Yang W, Xue H, Jiang S (2008) Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. Biomacromol 9(10):2686–2692. https://doi.org/10.1021/bm800407r

    Article  CAS  Google Scholar 

  150. Ning J, Li G, Haraguchi K (2013) Synthesis of Highly Stretchable, mechanically tough, zwitterionic sulfobetaine nanocomposite gels with controlled thermosensitivities. Macromolecules 46(13):5317–5328. https://doi.org/10.1021/ma4009059

    Article  CAS  Google Scholar 

  151. Aryal SKC, Bhattarai N, Kim CK, Kim HY (2006) Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J Colloid Interface Sci 299(1):191–197. https://doi.org/10.1016/j.jcis.2006.01.045

    Article  CAS  PubMed  Google Scholar 

  152. Nosaka Y, Ohta N, Fukuyama T, Fujii N (1993) Size control of ultrasmall cds particles in aqueous solution by using various thiols. J Colloid Interface Sci 155(1):23–29. https://doi.org/10.1006/jcis.1993.1004

    Article  CAS  Google Scholar 

  153. Bae W, Mehra RK (1998) Cysteine-capped ZnS nanocrystallites: preparation and characterization. J Inorg Biochem 70(2):125–135. https://doi.org/10.1016/s0162-0134(98)10008-9

    Article  CAS  Google Scholar 

  154. Kolny-Olesiak J, Kloper V, Osovsky R, Sashchiuk A, Lifshitz E (2007) Synthesis and characterization of brightly photoluminescent CdTe nanocrystals. Surf Sci 601(13):2667–2670. https://doi.org/10.1016/j.susc.2006.12.013

    Article  CAS  Google Scholar 

  155. Ahmadi R, Ranjbarnodeh E, Gu N (2012) Synthesizing cysteine-coated magnetite nanoparticles as MRI contrast agent: effect of pH and cysteine addition on particles size distribution. Mater Sci-Pol 30(4):382–389. https://doi.org/10.2478/s13536-012-0048-6

    Article  CAS  Google Scholar 

  156. Mohammadi H, Farzinpour A, Vaziry A (2017) Reproductive performance of breeder quails fed diets supplemented with L-cysteine-coated iron oxide nanoparticles. Reprod Domest Anim 52(2):298–304. https://doi.org/10.1111/rda.12902

    Article  CAS  PubMed  Google Scholar 

  157. Iwasaki Y, Ishihara K (2012) Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater 13(6):064101. https://doi.org/10.1088/1468-6996/13/6/064101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hess M, Jones RG, Kahovec J, Kitayama T, Kratochvíl P, Kubisa P, Wilks ES (2006) Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006). Pure Appl Chem 78(11):2067–2074. https://doi.org/10.1351/pac200678112067

    Article  CAS  Google Scholar 

  159. Laschewsky A (2014) Structures and synthesis of zwitterionic polymers. Polymers 6(5):1544–1601. https://doi.org/10.3390/polym6051544

    Article  CAS  Google Scholar 

  160. Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. Adv Polym Sci. https://doi.org/10.1007/12_078

    Article  Google Scholar 

  161. Laughlin RG (1991) Fundamentals of the zwitterionic hydrophilic group. Langmuir 7(5):842–847. https://doi.org/10.1021/la00053a006

    Article  CAS  Google Scholar 

  162. Vaisocherová H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, Jiang S (2008) Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 80(20):7894–7901. https://doi.org/10.1021/ac8015888

    Article  CAS  PubMed  Google Scholar 

  163. Yang W, Chen S, Cheng G, Vaisocherová H, Xue H, Li W, Jiang S (2008) Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 24(17):9211–9214. https://doi.org/10.1021/la801487f

    Article  CAS  PubMed  Google Scholar 

  164. Yang W, Zhang L, Wang S, White AD, Jiang S (2009) Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials 30(29):5617–5621. https://doi.org/10.1016/j.biomaterials.2009.06.036

    Article  CAS  PubMed  Google Scholar 

  165. Biehl P, von der Lühe M, Dutz S, Schacher F (2018) Synthesis, Characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers 10(1):91. https://doi.org/10.3390/polym10010091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang X, Lin W, Chen S, Xu H, Gu H (2011) Development of a stable dual functional coating with low non-specific protein adsorption and high sensitivity for new superparamagnetic nanospheres. Langmuir 27(22):13669–13674. https://doi.org/10.1021/la202566d

    Article  CAS  PubMed  Google Scholar 

  167. Chen Y, Xiong Z, Zhang L, Zhao J, Zhang Q, Peng L, Zou H (2015) Facile synthesis of zwitterionic polymer-coated core–shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. Nanoscale 7(7):3100–3108. https://doi.org/10.1039/c4nr05955g

    Article  CAS  PubMed  Google Scholar 

  168. Von der Lühe M, Günther U, Weidner A, Gräfe C, Clement JH, Dutz S, Schacher FH (2015) SPION@polydehydroalanine hybrid particles. RSC Adv 5(40):31920–31929. https://doi.org/10.1039/c5ra01737h

    Article  Google Scholar 

  169. Mincheva R, Stoilova O, Penchev H, Ruskov T, Spirov I, Manolova N, Rashkov I (2008) Synthesis of polymer-stabilized magnetic nanoparticles and fabrication of nanocomposite fibers thereof using electrospinning. Eur Polymer J 44(3):615–627. https://doi.org/10.1016/j.eurpolymj.2007.11.001

    Article  CAS  Google Scholar 

  170. Robles J, Das R, Glassell M, Phan MH, Srikanth H (2018) Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia. AIP Adv 8(5):056719. https://doi.org/10.1063/1.5007249

    Article  CAS  Google Scholar 

  171. Lee S-C, Fu C-M, Chang F-H (2013) Effects of core/shell structure on magnetic induction heating promotion in Fe3O4/γ-Fe2O3 magnetic nanoparticles for hyperthermia. Appl Phys Lett 103(16):163104. https://doi.org/10.1063/1.4825270

    Article  CAS  Google Scholar 

  172. Nemati Z, Alonso J, Khurshid H, Phan MH, Srikanth H (2016) Core/shell iron/iron oxide nanoparticles: are they promising for magnetic hyperthermia? RSC Adv 6(45):38697–38702. https://doi.org/10.1039/c6ra05064f

    Article  CAS  Google Scholar 

  173. Nemati Z, Alonso J, Martinez LM, Khurshid H, Garaio E, Garcia JA, Srikanth H (2016) Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J Phys Chem C 120(15):8370–8379. https://doi.org/10.1021/acs.jpcc.6b01426

    Article  CAS  Google Scholar 

  174. Darwish MSA, Kim H, Lee H, Ryu C, Young Lee J, Yoon J (2020) Engineering core-shell structures of magnetic ferrite nanoparticles for high hyperthermia performance. Nanomaterials 10(5):991. https://doi.org/10.3390/nano10050991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang M, Ho C, Ruta S, Chantrell R, Krycka K, Hovorka O, Lai C (2018) Magnetic interaction of multifunctional core-shell nanoparticles for highly effective theranostics. Adv Mater 30(50):1802444. https://doi.org/10.1002/adma.201802444

    Article  CAS  Google Scholar 

  176. Lavorato GC, Das R, Xing Y, Robles J, Litterst FJ, Baggio-Saitovitch E, Srikanth H (2020) Origin and shell-driven optimization of the heating power in core/shell bimagnetic nanoparticles. ACS Appl Nano Mater 3(2):1755–1765. https://doi.org/10.1021/acsanm.9b02449

    Article  CAS  Google Scholar 

  177. Coşkun M, Çitoğlu S, Korkmaz M, Firat T (2017) The magnetic anisotropy effectiveness on NiFe2O4 and NiFe2O4@SiO2 nanoparticles for hyperthermia applications. Cumhuriyet Sci J. https://doi.org/10.17776/csj.363654

    Article  Google Scholar 

  178. Xie J, Zhang Y, Yan C, Song L, Wen S, Zang F, Gu N (2014) High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 35(33):9126–9136. https://doi.org/10.1016/j.biomaterials.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  179. Yang Q, Gong M, Cai S, Zhang T, Douglas JT, Chikan V, Forrest ML (2015) Combining hard and soft magnetism into a single core-shell nanoparticle to achieve both hyperthermia and image contrast. Ther Deliv 6(10):1195–1210. https://doi.org/10.4155/tde.15.68

    Article  CAS  PubMed  Google Scholar 

  180. Fabris F, Lima E, De Biasi E, Troiani HE, Vásquez Mansilla M, Torres TE, Winkler EL (2019) Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core–shell nanoparticles. Nanoscale 11(7):3164–3172. https://doi.org/10.1039/c8nr07834c

    Article  CAS  PubMed  Google Scholar 

  181. Nica V, Caro C, Páez-Muñoz JM, Leal MP, Garcia-Martin ML (2020) Bi-Magnetic core-shell CoFe2O4@MnFe2O4 nanoparticles for in vivo theranostics. Nanomaterials 10(5):907. https://doi.org/10.3390/nano10050907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Demillo VG, Zhu X (2015) Zwitterionic amphiphile coated magnetofluorescent nanoparticles – synthesis, characterization and tumor cell targeting. J Mater Chem B 3(42):8328–8336. https://doi.org/10.1039/c5tb01116g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu W, Zhong W, Du YW (2008) Magnetic nanoparticles with core/shell structures. J Nanosci Nanotechnol 8(6):2781–2792. https://doi.org/10.1166/jnn.2008.18307

    Article  CAS  PubMed  Google Scholar 

  184. Venkatesha N, Qurishi Y, Atreya HS, Srivastava C (2016) Effect of core–shell nanoparticle geometry on the enhancement of the proton relaxivity value in a nuclear magnetic resonance experiment. RSC Adv 6(69):64605–64610. https://doi.org/10.1039/c6ra11016a

    Article  CAS  Google Scholar 

  185. Obaidat IM, Narayanaswamy V, Alaabed S, Sambasivam S, Muralee Gopi CVV (2019) Principles of magnetic hyperthermia: a focus on using multifunctional hybrid magnetic nanoparticles. Magnetochemistry 5(4):67. https://doi.org/10.3390/magnetochemistry5040067

    Article  CAS  Google Scholar 

  186. Lee J-H, Jang J, Choi J, Moon SH, Noh S, Kim J, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422. https://doi.org/10.1038/nnano.2011.95

    Article  CAS  PubMed  Google Scholar 

  187. Nayek C, Manna K, Bhattacharjee G, Murugavel P, Obaidat I (2017) Investigating Size- and temperature-dependent coercivity and saturation magnetization in PEG coated Fe3O4 nanoparticles. Magnetochemistry 3(2):19. https://doi.org/10.3390/magnetochemistry3020019

    Article  CAS  Google Scholar 

  188. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Pellegrino T (2012) Water-Soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091. https://doi.org/10.1021/nn2048137

    Article  CAS  PubMed  Google Scholar 

  189. Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Baldomir D (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Scientif Rep. https://doi.org/10.1038/srep01652

    Article  Google Scholar 

  190. Usov NA, Nesmeyanov MS, Gubanova EM, Epshtein NB (2019) Heating ability of magnetic nanoparticles with cubic and combined anisotropy. Beilstein J Nanotechnol 10:305–314. https://doi.org/10.3762/bjnano.10.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32. https://doi.org/10.1016/j.physrep.2014.09.007

    Article  CAS  Google Scholar 

  192. Lavorato GC, Lima E, Troiani HE, Zysler RD, Winkler EL (2017) Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles. Nanoscale 9(29):10240–10247. https://doi.org/10.1039/c7nr03740f

    Article  CAS  PubMed  Google Scholar 

  193. Noh S, Na W, Jang J, Lee J-H, Lee EJ, Moon SH, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12(7):3716–3721. https://doi.org/10.1021/nl301499u

    Article  CAS  PubMed  Google Scholar 

  194. Skoropata E, Desautels RD, Chi C-C, Ouyang H, Freeland JW, van Lierop J (2014) Magnetism of iron oxide based core-shell nanoparticles from interface mixing with enhanced spin-orbit coupling. Phys Rev B 89:2. https://doi.org/10.1103/physrevb.89.024410

    Article  Google Scholar 

  195. Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz JS, Baró MD (2005) Exchange bias in nanostructures. Phys Rep 422(3):65–117. https://doi.org/10.1016/j.physrep.2005.08.004

    Article  Google Scholar 

  196. Phan M-H, Alonso J, Khurshid H, Lampen-Kelley P, Chandra S, Stojak Repa K, Srikanth H (2016) Exchange bias effects in iron oxide-based nanoparticle systems. Nanomaterials 6(11):221. https://doi.org/10.3390/nano6110221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Moon SH, Noh S, Lee J-H, Shin T-H, Lim Y, Cheon J (2017) Ultrathin interface regime of core-shell magnetic nanoparticles for effective magnetism tailoring. Nano Lett 17(2):800–804. https://doi.org/10.1021/acs.nanolett.6b04016

    Article  CAS  PubMed  Google Scholar 

  198. Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J Am Chem Soc 134(24):10182–10190. https://doi.org/10.1021/ja302856z

    Article  CAS  PubMed  Google Scholar 

  199. Zhang Q, Castellanos-Rubio I, Munshi R, Orue I, Pelaz B, Gries KI, Pralle A (2015) Model driven optimization of magnetic anisotropy of exchange-coupled core-shell ferrite nanoparticles for maximal hysteretic loss. Chem Mater 27(21):7380–7387. https://doi.org/10.1021/acs.chemmater.5b03261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bordet A, Landis RF, Lee Y, Tonga GY, Asensio JM, Li C-H, Chaudret B (2019) Water-dispersible and biocompatible iron carbide nanoparticles with high specific absorption rate. ACS Nano 13(3):2870–2878. https://doi.org/10.1021/acsnano.8b05671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kuimova MK, Botchway SW, Parker AW, Balaz M, Collins HA, Anderson HL, Ogilby PR (2009) Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem 1(1):69–73. https://doi.org/10.1038/nchem.120

    Article  CAS  PubMed  Google Scholar 

  202. Shaterabadi Z, Nabiyouni G, Soleymani M (2020) Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Mater Sci Eng, C 117:111274. https://doi.org/10.1016/j.msec.2020.111274

    Article  CAS  Google Scholar 

  203. Avolio M, Guerrini A, Brero F, Innocenti C, Sangregorio C, Cobianchi M, Lascialfari A (2019) In-gel study of the effect of magnetic nanoparticles immobilization on their heating efficiency for application in magnetic fluid hyperthermia. J Magn Magn Mater 471:504–512. https://doi.org/10.1016/j.jmmm.2018.09.111

    Article  CAS  Google Scholar 

  204. Bruvera IJ, Actis DG, Calatayud MP, Mendoza Zélis P (2019) Typical experiment vs. in-cell like conditions in magnetic hyperthermia: Effects of media viscosity and agglomeration. J Magn Magn Mater 491:165563. https://doi.org/10.1016/j.jmmm.2019.165563

    Article  CAS  Google Scholar 

  205. De la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116(48):25602–25610. https://doi.org/10.1021/jp310771p

    Article  CAS  Google Scholar 

  206. Department of Inorganic Biomaterials (Kawashita Lab) http://www.tmd.ac.jp/bcr/research-e.html, website adopted date: May 2019.

Download references

Acknowledgements

Dr. Krishnamoorthi Chintagumpala thanks SERB, New Delhi, for providing EMR funding under file No.: EMR/2017/005081.

Funding

SERB, New Delhi, for providing EMR funding under file No.: EMR/2017/005081.

Author information

Authors and Affiliations

Authors

Contributions

VV contributed to writing—original draft, data curation, conceptualization;. KC designed conceptualization and helped in review and editing.

Corresponding author

Correspondence to V. Vijayakanth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakanth, V., Chintagumpala, K. A review on an effect of dispersant type and medium viscosity on magnetic hyperthermia of nanoparticles. Polym. Bull. 80, 4737–4781 (2023). https://doi.org/10.1007/s00289-022-04324-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04324-w

Keywords

Navigation