Skip to main content
Log in

Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnetic iron oxide nanoparticles (MIONPs) are particularly attractive in biosensor, antibacterial activity, targeted drug delivery, cell separation, magnetic resonance imaging tumor magnetic hyperthermia, and so on because of their particular properties including superparamagnetic behavior, low toxicity, biocompatibility, etc. Although many methods had been developed to produce MIONPs, some challenges such as severe agglomeration, serious oxidation, and irregular size are still faced in the synthesis of MIONPs. Thus, various strategies had been developed for the surface modification of MIONPs to improve the characteristics of them and obtain multifunctional MIONPs, which will widen the applicational scopes of them. Therefore, the processes, mechanisms, advances, advantages, and disadvantages of six main approaches for the synthesis of MIONPs; surface modification of MIONPs with inorganic materials, organic molecules, and polymer molecules; applications of MIONPs or modified MIONPs; the technical challenges of synthesizing MIONPs; and their limitations in biomedical applications were described in this review to provide the theoretical and technological guidance for their future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:

Similar content being viewed by others

References

  1. T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang, and Y. Xia: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. 53, 12320 (2014).

    CAS  Google Scholar 

  2. K. Ei-Boubbou: Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine 2, 1 (2018).

    Google Scholar 

  3. X. Luo, X. Peng, J. Hou, S. Wu, J. Shen, and L. Wang: Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int. J. Nanomed. 12, 5331 (2017).

    Article  CAS  Google Scholar 

  4. W. Ma, Q. Xie, B. Zhang, H. Chen, J. Tang, Z. Lei, M. Wu, D. Zhang, and J. Hu: Neural induction potential and MRI of ADSCs labeled cationic superparamagnetic iron oxide nanoparticle in vitro. Contrast Media Mol. Imaging 2018, 1 (2018).

    Google Scholar 

  5. L.P. Lingamdinne, Y.Y. Chang, J.K. Yang, J. Singh, E.H. Choi, M. Shiratani, J.R. Koduru, and P. Attri: Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 307, 74 (2017).

    Article  CAS  Google Scholar 

  6. E. Bull, S. Madani, R. Sheth, A. Seifalian, M. Green, and A. Seifalian: Stem cell tracking using iron oxide nanoparticles. Int. J. Nanomed. 9, 1641 (2014).

    CAS  Google Scholar 

  7. S. Feijoo, S. Gonzalez-Garca, Y. Moldes-Diz, C. Vazquez-Vazquez, G. Feijoo, and M.T. Moreira: Comparative life cycle assessment of different synthesis routes of magnetic nanoparticles. J. Cleaner Prod. 143, 528 (2017).

    Article  CAS  Google Scholar 

  8. E. Sari, A. Fadli, and A. Amri: The 3 hours-hydrothermal synthesis of high surface area superparamagnetic Fe3O4 core–shell nanoparticles. JUSAMI 19, 9 (2017).

    Article  Google Scholar 

  9. G.M. Sulaiman, A.T. Tawfeeq, and A.S. Naji: Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif. Cells, Nanomed., Biotechnol. 46, 1215 (2018).

    Article  CAS  Google Scholar 

  10. W. Wu, Q. He, and C. Jiang: Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–451 (2008).

    Article  CAS  Google Scholar 

  11. N. Zhu, H. Ji, P. Yu, J. Niu, M.U. Farooq, M.W. Akram, I.O. Udego, H. Li, and X. Niu: Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8, 810 (2018).

    Article  CAS  Google Scholar 

  12. K. Pušnik, T. Goršak, M. Drofenik, and D. Makovec: Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid. J. Magn. Magn. Mater. 413, 65 (2016).

    Article  CAS  Google Scholar 

  13. W. Byoun, M. Jang, and H. Yoo: Fabrication of highly fluorescent multiple Fe3O4 nanoparticles core–silica shell nanoparticles. J. Nanopart. Res. 21, 1 (2019).

    Article  CAS  Google Scholar 

  14. S.K. Suh, K. Yuet, K. Hwang, K.W. Bong, P.S. Doyle, and T.A. Hatton: Synthesis of nonspherical superparamagnetic particles: In situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J. Am. Chem. Soc. 134, 7337 (2012).

    Article  CAS  Google Scholar 

  15. U. Tamer, Y. Gündoğdu, H. Boyacıi, and K. Pekmez: Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. J. Nanopart. Res. 12, 1187 (2010).

    Article  CAS  Google Scholar 

  16. P. Businova, J. Chomoucka, J. Prasek, R. Hrdy, J. Drbohlavova, P. Sedlacek, and J. Hubalek: Polymer-coated iron oxide magnetic nanoparticles-preparation and characterization. Nano Convergence 4, 565 (2011).

    Google Scholar 

  17. M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman, and J. Amin: Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533 (2013).

    Article  CAS  Google Scholar 

  18. A. Wahab, M. Imran, M. Ikram, M. Naz, M. Aqeel, A. Rafiq, H. Majeed, and S. Ali: Dye degradation property of cobalt and manganese doped iron oxide nanoparticles. Appl. Nanosci. 1, 1 (2019).

    Google Scholar 

  19. Z. Liu, H. Wang, Q. Lu, G. Du, L. Peng, Y. Du, S. Zhang, and K. Yao: Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J. Magn. Magn. Mater. 283, 258 (2004).

    Article  CAS  Google Scholar 

  20. M. Aghazadeh and I. Karimzadeh: Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications. Int. J. Inorg. Mater. 5, 95 (2016).

    Google Scholar 

  21. E. Alp and N. Aydogan: A comparative study: Synthesis of superparamagnetic iron oxide nanoparticles in air and N2 atmosphere. Colloids Surf., A 510, 205 (2016).

    Article  CAS  Google Scholar 

  22. S. Li, T. Zhang, R. Tang, H. Qiu, C. Wang, and Z. Zhou: Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 379, 226 (2015).

    Article  CAS  Google Scholar 

  23. R. Walton: Cheminform abstract: Solvothermal synthesis of cerium oxides. ChemInform 33, 126 (2010).

    Article  Google Scholar 

  24. Y. Tian, B. Yu, X. Li, and K. Li: Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometer as potential MRI contrast agents. J. Mater. Chem. 21, 2476 (2011).

    Article  CAS  Google Scholar 

  25. Q. Du, H. Cai, J. Zhu, and T. Geng: Preparation of Fe2O3 micro/nanomaterials by hydrothermal method and its magnetic properties. Bull. Korean Chem. Soc. 34, 3287 (2015).

    CAS  Google Scholar 

  26. N. Torres-Gómez, O. Nava, L. Argueta-Figueroa, R. García-Contreras, A. Baeza-Barrera, and A.R. Vilchis-Nestor: Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: Effect of temperature. J. Nanomater. 2019, 1 (2019).

    Article  CAS  Google Scholar 

  27. T. Hyeon, S. Lee, J. Park, Y. Chung, and H. Na: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 (2001).

    Article  CAS  Google Scholar 

  28. W. Wu, Z. Wu, T. Yu, C. Jiang, and W.S. Kim: Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 23501 (2015).

    Article  CAS  Google Scholar 

  29. Z. Chen: Size and shape controllable synthesis of monodisperse iron oxide nanoparticles by thermal decomposition of iron oleate complex. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 42, 1040 (2012).

    Article  CAS  Google Scholar 

  30. R. Hufschmid and H. Arami: Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7, 11142 (2015).

    Article  CAS  Google Scholar 

  31. C. Fu and N. Ravindra: Magnetic iron oxide nanoparticles: Synthesis and applications. Bioinspired, Biomimetic Nanobiomater. 1, 229 (2015).

    Article  CAS  Google Scholar 

  32. G. Kandasamy and D. Maity: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496, 191 (2015).

    Article  CAS  Google Scholar 

  33. P. Hu, T. Chang, W.J. Chen, J. Deng, S.L. Li, Y.G. Zuo, L. Kang, F. Yang, M. Hostetter, and A.A. Volinsky: Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol–gel explosion-assisted method. J. Alloys Compd. 773, 605 (2019).

    Article  CAS  Google Scholar 

  34. S. Richard, V. Eder, G. Caputo, C. Journe, P. Ou, J. Bolley, L. Louedec, E. Guenin, L. Motte, N. Pinna, and Y. Lalatonne: USPIO size control through microwave nonaqueous sol–gel method for neoangiogenesis T2 MRI contrast agent. Nanomedicine 11, 2769 (2016).

    CAS  Google Scholar 

  35. I. Masthoff, M. Kraken, D. Menzel, F. Litterst, and G. Garnweitner: Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol–gel method. J. Sol–Gel Sci. Technol. 77, 553 (2016).

    Article  CAS  Google Scholar 

  36. Y. Lu, Y. Yin, B.T. Mayers, and Y. Xia: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett. 2, 183 (2002).

    Article  CAS  Google Scholar 

  37. I. Karimzadeh, M. Aghazadeh, T. Doroudi, M. Ganjali, and P. Kolivand: Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: A facile and scalable preparation route based on the cathodic electrochemical deposition (CED) method. Adv. Phys. Chem. 5, 95 (2016).

    Google Scholar 

  38. I. Karimzadeh, M. Aghazadeh, A. Dalvand, T. Doroudi, P.H. Kolivand, M.R. Ganjali, and P. Norouzi: Effective electrosynthesis and in situ surface coating of Fe3O4 nanoparticles with polyvinyl alcohol for biomedical applications. Mater. Res. Innovations 23, 1 (2019).

    CAS  Google Scholar 

  39. M. Starowicz, P. Starowicz, J. Zukrowski, J. Przewoznik, A. Lemanski, C. Kapusta, and J. Banas: Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J. Nanopart. Res. 13, 7167 (2011).

    Article  CAS  Google Scholar 

  40. R.A. Ismail, G.M. Sulaiman, and S.A. Abdulrahman: Preparation of iron oxide nanoparticles by laser ablation in DMF under of external magnetic field. Int. J. Mod. Phys. B 30, 1650094 (2016).

    Article  CAS  Google Scholar 

  41. R.A. Ismail, G.M. Sulaiman, S.A. Abdulrahman, and T.R. Marzoog: Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng., C 53, 286 (2015).

    Article  CAS  Google Scholar 

  42. E. Fazio, M. Santoro, G. Lentini, D. Franco, S.P.P. Guglielmino, and F. Neri: Iron oxide nanoparticles prepared by laser ablation: Synthesis, structural properties and antimicrobial activity. Colloids Surf., A 490, 98 (2016).

    Article  CAS  Google Scholar 

  43. H. Park, J. Mcconnell, S. Boddohi, M. Kipper, and P. Johnson: Synthesis and characterization of enzyme-magnetic nanoparticle complexes: Effect of size on activity and recovery. Colloids Surf., B 83, 198 (2011).

    Article  CAS  Google Scholar 

  44. C. Hui, C. Shen, J. Tian, L. Bao, H. Ding, Y. Tian, X. Shi, and H. Gao: Core–shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3, 701 (2011).

    Article  CAS  Google Scholar 

  45. M. Sonmez, M. Georgescu, L. Alexandrescu, D. Gurau, A. Ficai, D. Ficai, and E. Andronescu: Synthesis and applications of Fe3O4/SiO2 core–shell materials. Curr. Pharm. Des. 21, 5324 (2015).

    Article  CAS  Google Scholar 

  46. Q. Fan, Y. Guan, Z. Zhang, G. Xu, Y. Yang, and C. Guo: A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction. Chem. Phys. Lett. 715, 7 (2019).

    Article  CAS  Google Scholar 

  47. N. Shahabadi, A. Khorshidi, H. Zhaleh, and S. Kashanian: Synthesis, characterization, cytotoxicity and DNA binding studies of Fe3O4@SiO2 nanoparticles coated by an antiviral drug lamivudine. J. Drug Delivery Sci. Technol. 46, 55 (2018).

    Article  CAS  Google Scholar 

  48. W. Stöber, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  49. S.A. Kulkarni, P.S. Sawadh, and P.K. Palei: Synthesis and characterization of superparamagnetic Fe3O4@SiO2 nanoparticles. Adv. Mater. Res. 58, 46 (2014).

    Google Scholar 

  50. H. Mitra, N. Shahtahmassebi, M. Roknabadi, and N. Ghows: Synthesis and study of structural and magnetic properties of superparamagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications. J. Nanomed. 1, 71 (2013).

    Google Scholar 

  51. E. Puscasu, L. Sacarescu, N. Lupu, M. Grigoras, G. Oanca, M. Balasoiu, and D. Creanga: Iron oxide–silica nanocomposites yielded by chemical route and sol–gel method. J. Sol. Gel Sci. Technol. 3, 1 (2016).

    Google Scholar 

  52. F. Li, Z. Yu, L. Zhao, and T. Xue: Synthesis and application of homogeneous Fe3O4 core/Au shell nanoparticles with strong SERS effect. RSC Adv. 6, 10352 (2016).

    Article  CAS  Google Scholar 

  53. M.H. Lee, C.C. Leu, C.C. Lin, Y.F. Tseng, H.Y. Lin, and C.N. Yang: Gold-decorated magnetic nanoparticles modified with hairpin-shaped DNA for fluorometric discrimination of single-base mismatch DNA. Microchim. Acta 186, 80 (2019).

    Article  CAS  Google Scholar 

  54. P. Miao, Y. Tang, and L. Wang: DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl. Mater. Interfaces 9, 3940 (2017).

    Article  CAS  Google Scholar 

  55. J. Zhao, K. Tu, Y. Liu, Y. Qin, X. Wang, L. Qi, and D. Shi: Photo-controlled aptamers delivery by dual surface gold-magnetic nanoparticles for targeted cancer therapy. Mater. Sci. Eng., C 80, 88 (2017).

    Article  CAS  Google Scholar 

  56. S. Chen, N. Liu, J. Yanyun, C. Xiong, and L. Dong: In situ synthesis and antibacterial application of Fe3O4@Ag nanoparticles. J. Func. Mater. 48, 03097 (2017).

    CAS  Google Scholar 

  57. B. Shao, X. Ma, S. Zhao, Y. Lv, X. Hun, H. Wang, and Z. Wang: Nanogapped Au(core)@Au–Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A. Anal. Chim. Acta 18, 53 (2018).

    Google Scholar 

  58. M. Stefan, C. Leostean, O. Pana, M. Soran, R. Suciu, E. Gautron, and O. Chauvet: Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core–shell nanoparticles. Appl. Surf. Sci. 288, 180 (2014).

    Article  CAS  Google Scholar 

  59. D. Portet, B. Denizot, E. Rump, J. Lejeune, and P. Jallet: Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid Interface Sci. 238, 37 (2001).

    Article  CAS  Google Scholar 

  60. P. Soares, C. Laia, A. Carvalho, L. Pereira, J. Coutinho, I. Ferreira, C. Novo, and J. Borges: Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Appl. Surf. Sci. 383, 240 (2016).

    Article  CAS  Google Scholar 

  61. L. Zhang, R. He, and H. Gu: Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611 (2006).

    Article  CAS  Google Scholar 

  62. K. Andreas, R. Georgieva, M. Ladwig, S. Mueller, M. Notter, M. Sittinger, and J. Ringe: Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 33, 4515 (2012).

    Article  CAS  Google Scholar 

  63. A. Saraswathy, S. Nazeer, M. Jeevan, N. Nimi, S. Arumugam, V. Harikrishnan, P. Varma, and R. Jayasreea: Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis. Colloids Surf., B 117, 216 (2014).

    Article  CAS  Google Scholar 

  64. I. Ardelean, L. Stoencea, D. Ficai, A. Ficai, R. Trusca, B. Vasile, G. Nechifor, and E. Andronescu: Development of stabilized magnetite nanoparticles for medical applications. J. Nanomater. 2017, 1 (2017).

    Article  CAS  Google Scholar 

  65. M. Yamaura, R. Camilo, L. Sampaio, M. Macedo, M. Nakamura, and H. Toma: Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210 (2008).

    Article  CAS  Google Scholar 

  66. Y. Jia, Z. Gao, and J. Cui: Preparation and characterization of two different amino-modified iron oxide magnetic nanoparticles and determination of the amount of amino on nanoparticle surface. J. Prev. Med. Chin. PLA 35, 1 (2017).

    Google Scholar 

  67. P. Teo, X. Wang, B. Chen, H. Zhang, X. Yang, Y. Huang, and J. Tang: Complex of TNF-α and modified Fe3O4 nanoparticles suppresses tumor growth by magnetic induction hyperthermia. Cancer Biother.Radiopharm. 32, 379 (2017).

    Article  CAS  Google Scholar 

  68. M. Khosroshahi and M. Asemani: Synthesis and characterization of hydrogel-based ferroscaffold containing fluorescein isothiocyanate (FITC) surface modified magnetite nanoparticles as optical marker. Adv. Nano Bio. M&D 1, 146 (2017).

    Google Scholar 

  69. J. Rowley and N.H. Abu-Zahra: Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe3O4 nanoparticles for As(V) removal from water. J. Environ. Chem. Eng. 7, 102875 (2019).

    Article  CAS  Google Scholar 

  70. X. Sun and Y. Li: Functional modification and preparation of superparamagnetic Fe3O4. Adv. Mater. Res. 743, 183 (2013).

    Article  CAS  Google Scholar 

  71. F. Ahangaran, A. Hassanzadeh, and S. Nouri: Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett. 3, 23 (2013).

    Article  CAS  Google Scholar 

  72. T. Chen, Y. Zhao, L. Zhao, J. Du, and C. Xie: Effect of modified Fe3O4 nanoparticles on the preparation of PMMA/Fe3O4 microspheres via suspension polymerization. IOP Conf. Ser.: Mater. Sci. Eng. 108, 1 (2017).

    Google Scholar 

  73. Z. Xiong, S. Li, and Y. Xia: Highly stable water-soluble magnetic nanoparticles synthesized through combined co-precipitation, surface-modification, and decomposition of a hybrid hydrogel. New J. Chem. 40, 9951 (2016).

    Article  CAS  Google Scholar 

  74. S. Cui, X. Shen, and B. Lin: Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents. Rare Met. 25, 426 (2006).

    Article  Google Scholar 

  75. Y. Gu, C. Hou, P. Gao, and X. Deng: Surface modification of hydrophilic Fe3O4 nanoparticles. Hebei Chem. Ind. 36, 1 (2013).

    Google Scholar 

  76. M.A. Radwan, M.A. Rashad, M.A. Sadek, and H.A. Elazab: Synthesis, characterization and selected application of chitosan-coated magnetic iron oxide nanoparticles. J. Chem. Technol. Metall. 81, 303 (2019).

    Google Scholar 

  77. F. Shahidi and R. Abuzaytoun: Chitin, chitosan, and co-products: Chemistry, production, applications, and health effects. Adv. Food Nutr. Res. 49, 93 (2005).

    Article  CAS  Google Scholar 

  78. M. Ziegler-Borowska, D. Chełminiak, and H. Kaczmarek: Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly (quaternary ammonium) salt. J. Therm. Anal. Calorim. 119, 499 (2015).

    Article  CAS  Google Scholar 

  79. A.P.M. Vieira, L.S. Arias, F.N.S. Neto, A.M. Kubo, B.H.R. Lima, E.R. Camargo, J.P. Pessan, A.C.B. Delbem, and D.R. Monteiro: Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids Surf., B 174, 224 (2019).

    Article  CAS  Google Scholar 

  80. N. Safee, M. Abdullah, and M. Othman: Carboxymethyl chitosan-Fe3O4 nanoparticles: Synthesis and characterization. Malaysian J. Anal. Sci. 14, 63 (2010).

    Google Scholar 

  81. X. Song, X. Luo, Q. Zhang, A. Zhu, L. Ji, and C. Yan: Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging. J. Magn. Magn. Mater. 388, 116 (2015).

    Article  CAS  Google Scholar 

  82. K. Boustani, S. Shayesteh, M. Salouti, A. Jafari, and A. Shal: Synthesis, characterisation and potential biomedical applications of magnetic core–shell structures: Carbon-, dextran-, SiO2- and ZnO-coated Fe3O4 nanoparticles. New J. Chem. 12, 78 (2018).

    Google Scholar 

  83. H. Unterweǵer, D. László, J. Matuszak, C. Janko, M. Poettler, J. Jordan, T. Bäuerle, J. Szebeni, T. Fey, A.R. Boccaccini, C. Alexiou, and I. Cicha: Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: Evaluation of size-dependent imaging properties, storage stability and safety. Int. J. Nanomed. 13, 1899 (2018).

    Article  Google Scholar 

  84. Q. Zhang, Q. Liu, M. Du, A. Vermorken, Y. Cui, L. Zhang, L. Guo, L. Ma, and M. Chen: Cetuximab and Doxorubicin loaded dextran-coated Fe3O4 magnetic nanoparticles as novel targeted nanocarriers for non-small cell lung cancer. J. Magn. Magn. Mater. 481, 122 (2019).

    Article  CAS  Google Scholar 

  85. H. Qin, D. Xu, and S. Yang: Dextran-coated Fe3O4 magnetic nanoparticles as a contrast agent in thermoacoustic tomography for hepatocellular carcinoma detection. J. Phys.: Conf. Ser. 277, 1 (2011).

    Google Scholar 

  86. X. Zhao, H. Cui, W. Chen, Y. Wang, B. Cui, C. Sun, Z. Meng, and G. Liu: Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One 9, 98919 (2014).

    Article  CAS  Google Scholar 

  87. I. Karimzadeh, M. Aghazadeh, M. Ganjali, T. Doroudi, and P. Kolivand: Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route. J. Magn. Magn. Mater. 433, 148 (2017).

    Article  CAS  Google Scholar 

  88. B. Steitz, H. Hofmann, S. Kamau, P. Hassa, M. Hottiger, B. Rechenberg, M. Amtenbrink, and A. Fink: Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. J. Magn. Magn. Mater. 311, 300 (2007).

    Article  CAS  Google Scholar 

  89. M. Arsianti, M. Lim, C.P. Marquis, and R. Amal: Polyethylenimine based magnetic iron-oxide vector: The effect of vector component assembly on cellular entry mechanism, intracellular localization, and cellular viability. Biomacromolecules 11, 2521 (2010).

    Article  CAS  Google Scholar 

  90. S. Topel, Ö. Topel, R. Bostancıoğlu, and A. Koparal: Synthesis and characterization of Bodipy functionalized magnetic iron oxide nanoparticles for potential bioimaging applications. Colloids Surf., B 128, 245 (2015).

    Article  CAS  Google Scholar 

  91. R. Tutuianu, L. Popescu, M. Preda, A. Rosca, R. Piticescu, and A. Burlacu: Evaluation of the ability of nanostructured PEI-coated iron oxide nanoparticles to incorporate cisplatin during synthesis. Nanomaterials 7, 314 (2017).

    Article  CAS  Google Scholar 

  92. T. Lü, D. Qi, D. Zhang, C. Zhang, and H. Zhao: One-step synthesis of versatile magnetic nanoparticles for efficiently removing emulsified oil droplets and cationic and anionic heavy metal ions from the aqueous environment. Environ. Sci. Pollut. Res. 26, 6153 (2019).

    Article  CAS  Google Scholar 

  93. J. Yang, Z. Ping, L. Yang, J. Cao, Y. Sun, D. Han, S. Yang, Z. Wang, G. Chen, B. Wang, and X. Kong: A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 303, 425 (2014).

    Article  CAS  Google Scholar 

  94. V. Patsula, J. Tulinska, Š. Trachtová, M. Kuricova, A. Liskova, A. Španová, F. Ciampor, I. Vavra, B. Rittich, M. Ursinyova, M. Dusinska, S. Ilavska, M. Horvathova, V. Masanova, I. Uhnakova, and D. Horák: Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine. Nanotoxicology 1, 1 (2019).

    Google Scholar 

  95. S. Zwart, J. Morgan, and S. Smith: Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the international space station. Am. J. Clin. Nutr. 98, 217 (2013).

    Article  CAS  Google Scholar 

  96. A. Mukhopadhyay, N. Joshi, K. Chattopadhyay, and G. De: A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C. ACS Appl. Mater. Interfaces 4, 142 (2012).

    Article  CAS  Google Scholar 

  97. F.A. Blyakhman, N.A. Buznikov, T.F. Sklyar, A.P. Safronov, E.V. Golubeva, A.V. Svalov, S.Y. Sokolov, G.Y. Melnikov, I. Orue, and G.V. Kurlyandskaya: Mechanical, electrical and magnetic properties of ferrogels with embedded iron oxide nanoparticles obtained by laser target evaporation: Focus on multifunctional biosensor applications. Sensors 18, 872 (2018).

    Article  CAS  Google Scholar 

  98. M. Dolci, J.F. Bryche, C. Leuvrey, S. Zafeiratos, S. Gree, S. Begin-Colin, G. Barbillon, and B.P. Pichon: Robust clicked assembly based on iron oxide nanoparticles for a new type of SPR biosensor. J. Mater. Chem. 6, 9102 (2018).

    CAS  Google Scholar 

  99. S.T. Shah, W.A. Yehye, O. Saad, K. Simarani, Z.Z. Chowdhury, A.A. Alhadi, and L.A. Al-Ani: Nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials 7, 306 (2017).

    Article  CAS  Google Scholar 

  100. W. Lu, M. Ling, M. Jia, P. Huang, C. Li, and B. Yan: Facile synthesis and characterization of polyethylenimine-coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 9, 1080 (2014).

    Article  CAS  Google Scholar 

  101. H. Xu, Z.P. Aguilar, L. Yang, M. Kuang, H. Duan, Y. Xiong, H. Wei, and A. Wang: Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32, 9758 (2011).

    Article  CAS  Google Scholar 

  102. A. Zengin, E. Yildirim, U. Tamer, and T. Caykara: Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol. Analyst 138, 7238 (2013).

    Article  CAS  Google Scholar 

  103. Y. Yang, Z. Xu, J. Jiang, Y. Gao, and W. Gu: Poly(imidazole/DMAEA) phosphazene/DNA self-assembled nanoparticles for gene delivery: Synthesis and in vitro transfection. J. Control. Release 127, 273 (2008).

    Article  CAS  Google Scholar 

  104. Y. Lu: Progress of magnetic nanoparticles as gene vector. Biotechnol. Lett. 24, 736 (2013).

    CAS  Google Scholar 

  105. Y. Wang, C. Xu, and H. Ow: Commercial nanoparticles for stem cell labeling and tracking. Theranostics 3, 544 (2013).

    Article  CAS  Google Scholar 

  106. R. Riahi, A. Tamayol, S. Shaegh, A. Ghaemmaghami, M. Dokmeci, and A. Khademhosseini: Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 7, 101 (2015).

    Article  Google Scholar 

  107. S. Laurent, D. Forge, M. Port, A. Roch, R. Robic, L. Elst, and N. Robic: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 39, 2064 (2008).

    Article  CAS  Google Scholar 

  108. B. Chen, W. Dai, B. He, H. Zhang, X. Wang, Y. Wang, and Q. Zhang: Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7, 538 (2017).

    Article  CAS  Google Scholar 

  109. R.A. Kader, L.C. Rose, H. Suhaimi, and M.S. Manickam: Synthesis and toxicity test of magnetic nanoparticle via biocompatible microemulsion system as template for application in targeted drug delivery. AIP Conf. Proc. 1885, 020136 (2017).

    Article  CAS  Google Scholar 

  110. C. Fan, W. Gao, Z. Chen, H. Fan, and M. Li: Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm. 404, 180 (2010).

    Article  CAS  Google Scholar 

  111. B. Jang, S. Park, S. Kang, J. Kim, and S. Kim: Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo. Quant. Imag. Med. Surg. 2, 1 (2012).

    Google Scholar 

  112. L. Thomas, L. Dekker, and M. Kallumadil: Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J. Mater. Chem. 19, 6529 (2009).

    Article  CAS  Google Scholar 

  113. P. Moroz, S. Jones, and B. Gray: Status of hyperthermia in the treatment of advanced liver cancer. J. Surg. Oncol. 77, 259 (2001).

    Article  CAS  Google Scholar 

  114. E. Kita, T. Oda, T. Kayano, S. Sato, M. Minagawa, H. Yanagihara, M. Kishimoto, C. Mitsumata, S. Hashimoto, K. Yamada, and N. Ohkohchi: Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J. Phys. D: Appl. Phys. 43, 2462 (2010).

    Article  CAS  Google Scholar 

  115. T. Liu, G. Chang, R. Cao, and L. Meng: Applications of superparamagnetic Fe3O4 nanoparticles in magnetic resonance imaging. Prog. Chem. 27, 601 (2015).

    CAS  Google Scholar 

  116. Y. Chen, J. Tao, F. Xiong, J. Zhu, Y. Zhang, Y. Ding, and L. Ge: Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev. Ind. Pharm. 36, 1235 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant No. 31572488), the Based and Advanced Research Projects of Chongqing (Grant No. cstc2017jcyjAX 0477) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, W., Wang, M., Xiong, C. et al. Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. Journal of Materials Research 34, 1828–1844 (2019). https://doi.org/10.1557/jmr.2019.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.129

Navigation