Skip to main content

Advertisement

Log in

Maritimibacter alexandrii sp. nov., a New Member of Rhodobacteraceae Isolated from Marine Phycosphere

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Marine phycosphere hosts cross-kingdom algae-bacteria interactions playing a variety of crucial roles in aquatic ecosystems especially for the prevention and control of harmful algal blooms (HABs). During the investigation of structural composition of phycosphere microbiota (PM) of diverse marine HAB dinoflagellates, a Gram-negative, strictly aerobic, non-motile and rod-shaped bacterium designated LZ-17T was isolated from the phycosphere of highly toxic Alexandrium catenella LZT09. The 16S rRNA gene sequence analysis and the multilocus sequence analysis (MLSA) based on five protein-coding housekeeping genes (atpD, gyrB, mutL, topA and rpoD) indicated that strain LZ-17T was affiliated to the genus Maritimibacter within the family Rhodobacteraceae, and closely related to Maritimibacter alkaliphilus HTCC2654T (99.1%), ‘Maritimibacter harenae’ DP07T (97.9%) and M. lacisalsi X12M-4T (95.7%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain LZ-17T and the type strain of M. alkaliphilus were 96.9% and 74.7%. However, strain LZ-17T could be clearly distinguished from its closest by the phenotypical and phenotypical characteristics. Strain LZ-17T contained Q-10 as its major isoprenoid quinone, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C16:0 and C16:0 2-OH as the predominant fatty acids (>10%). The major polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine. The DNA G + C content was 64.3 mol%. Based on the polyphasic taxonomic characterization, strain LZ-17T represents a novel species of the genus Maritimibacter, for which the name Maritimibacter alexandrii sp. nov. is proposed, with the type strain LZ-17T (=CCTCC 2019005T = KCTC 72193T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABI:

Algae-bacteria interactions

ANI:

Average nucleotide identity

APL:

Aminophospholipids

dDDH:

Digital DNA-DNA hybridization

DPG:

Diphosphatidylglycerol

GL:

Glycolipid

HAB:

Harmful algal blooms

MA:

Marine agar 2216

MB:

Marine broth 2216

ML:

Maximum likelihood

MLSA:

Multilocus sequence analysis

MP:

Maximum parsimony

NJ:

Neighbor joining

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PL:

Phospholipids

PM:

Phycosphere microbiota

PMP:

Phycosphere microbiome project

PSP:

Paralytic shellfish poisoning

UBCG:

Up-to-date bacterial core gene

References

  1. Buchan A, González JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microb 71:5665–5677. https://doi.org/10.1128/AEM.71.10.5665-5677,2005

    Article  CAS  Google Scholar 

  2. Liang KY, Orata FD, Boucher YF et al (2021) Roseobacters in a sea of poly-and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol 12:1635. https://doi.org/10.3389/fmicb.2021.683109

    Article  Google Scholar 

  3. Lee K, Choo YJ, Giovannoni SJ et al (2007) Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 57:1653–1658. https://doi.org/10.1099/ijs.0.64960-0

    Article  PubMed  Google Scholar 

  4. Zhong ZP, Liu Y, Zhou YG et al (2015) Maritimibacter lacisalsi sp. nov., isolated from a salt lake, and emended description of the genus Maritimibacter Lee et al 2007. Int J Syst Evol Microbiol 65:3462–3468. https://doi.org/10.1099/ijsem.0.000437

    Article  CAS  PubMed  Google Scholar 

  5. Khan SA, Jung HS, Park HY et al (2021) Maritimibacter harenae sp. nov. and Sneathiella litorea sp. nov.: members of alphaproteobacteria isolated from sea sand. Antonie Van Leeuwenhoek 114:799–811. https://doi.org/10.1007/s10482-021-01559-x

    Article  CAS  PubMed  Google Scholar 

  6. Seymour JR, Amin SA, Raina JB et al (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol 2:1–12. https://doi.org/10.1038/nmicrobiol.2017.65

    Article  CAS  Google Scholar 

  7. Zhang XL, Qi M, Li QH et al (2021) Maricaulis alexandrii sp. nov., a novel active bioflocculants-bearing and dimorphic prosthecate bacterium isolated from marine phycosphere. Antonie Van Leeuwenhoek 114:1195–1203. https://doi.org/10.1007/s10482-021-01588-6

    Article  CAS  PubMed  Google Scholar 

  8. Yang Q, Ge YM, Iqbal NM et al (2021) Sulfitobacter alexandrii sp. nov., a new microalgae growth-promoting bacterium with exopolysaccharides bioflocculanting potential isolated from marine phycosphere. Antonie Van Leeuwenhoek 114:1091–1106. https://doi.org/10.1007/s10482-021-01580-0

    Article  CAS  PubMed  Google Scholar 

  9. Banyal A, Thakur V, Thakur R et al (2021) Endophytic microbial diversity: a new hope for the production of novel anti-tumor and anti-HIV agents as future therapeutics. Curr Microbiol 78:1699–1717. https://doi.org/10.1007/s00284-021-02359-2

    Article  CAS  PubMed  Google Scholar 

  10. Yang Q, Feng Q, Zhang BP et al (2021) Marinobacter alexandrii sp. nov., a novel yellow-pigmented and algae growth-promoting bacterium isolated from marine phycosphere microbiota. Antonie Van Leeuwenhoek 114:709–718

    Article  CAS  Google Scholar 

  11. Yang X, Xiang R, Iqbal NM et al (2021) Marinobacter shengliensis subsp. alexandrii subsp. Nov., isolated from cultivable phycosphere microbiota of highly toxic dinoflagellate Alexandrium catenella LZT09 and description of Marinobacter shengliensis subsp. shengliensis subsp. nov. Curr Microbiol 78:1648–1655. https://doi.org/10.1007/s00284-021-02431-x

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XL, Li GX et al (2021) Sphingopyxis microcysteis sp. Nov., a novel bioactive exopolysaccharides- bearing Sphingomonadaceae isolated from the microcystis phycosphere. Antonie Van Leeuwenhoek 114(6):845–857. https://doi.org/10.1007/s10482-021-01563-1

    Article  CAS  PubMed  Google Scholar 

  13. Duan Y, Jiang Z, Wu Z et al (2020) Limnobacter alexandrii sp. nov., a thiosulfate-oxidizing, heterotrophic and EPS-bearing Burkholderiaceae isolated from cultivable phycosphere microbiota of toxic Alexandrium catenella LZT09. Antonie Van Leeuwenhoek 113:1689–1698. https://doi.org/10.1007/s10482-020-01473-8

    Article  CAS  PubMed  Google Scholar 

  14. Yang Q, Jiang Z, Zhou X et al (2020) Nioella ostreopsis sp. nov., isolated from toxic dinoflagellate, Ostreopsis lenticularis. Int J Syst Evol Microbiol 70:759–765. https://doi.org/10.1099/ijsem.0.003816

    Article  PubMed  Google Scholar 

  15. Yang Q, Jiang Z, Zhou X et al (2020) Haliea alexandrii sp. nov., isolated from phycosphere microbiota of the toxin-producing dinoflagellate Alexandrium catenella. Int J Syst Evol Microbiol 70:1133–1138. https://doi.org/10.1099/ijsem.0.003890

    Article  CAS  PubMed  Google Scholar 

  16. Zhang XL, Yang X, Wang SJ et al (2020) Draft genome sequences of nine cultivable heterotrophic proteobacteria isolated from phycosphere microbiota of toxic Alexandrium catenella LZT09. Microbiol Resour Announc 9:e00281–e002820. https://doi.org/10.1128/MRA.00281-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang Q, Jiang Z, Zhou X et al (2020) Saccharospirillum alexandrii sp. nov., isolated from the toxigenic marine dinoflagellate Alexandrium catenella LZT09. Int J Syst Evol Microbiol 70:820–826. https://doi.org/10.1099/ijsem.0.003832

    Article  CAS  PubMed  Google Scholar 

  18. Yang Q, Zhang X, Li L et al (2018) Ponticoccus alexandrii sp. nov., a novel bacterium isolated from the marine toxigenic dinoflagellate Alexandrium minutum. Antonie Van Leeuwenhoek 111:995–1000. https://doi.org/10.1007/s10482-017-0996-2

    Article  CAS  PubMed  Google Scholar 

  19. Tindall BJ, Rosselló-Móra R, Busse HJ et al (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. https://doi.org/10.1099/ijs.0.016949-0

    Article  CAS  PubMed  Google Scholar 

  20. Yang Q, Jiang ZW, Huang CH et al (2018) Hoeflea prorocentri sp. nov., isolated from a culture of the marine dinoflagellate Prorocentrum mexicanum PM01. Antonie Van Leeuwenhoek 111:1845–1853. https://doi.org/10.1007/s10482-018-1074-0

    Article  CAS  PubMed  Google Scholar 

  21. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  22. Thompson FL, Gomez-Gil B, Vasconcelos AT et al (2007) Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. Appl Environ Microb 73:4279–4285. https://doi.org/10.1128/AEM.00020-07

    Article  CAS  Google Scholar 

  23. Zhang D, Gao F, Jakovlić I et al (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20:348–355. https://doi.org/10.1111/1755-0998.13096

    Article  PubMed  Google Scholar 

  24. Na SI, Kim YO, Yoon SH et al (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  PubMed  Google Scholar 

  25. Lee I, Kim YO, Park SC et al (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  26. Blin K, Shaw S, Kloosterman AM et al (2021) AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35. https://doi.org/10.1093/nar/gkab335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang X, Jiang Z, Zhang J et al (2020) Mesorhizobium alexandrii sp. nov., isolated from phycosphere microbiota of PSTs-producing marine dinoflagellate Alexandrium minutum amtk4. Antonie Van Leeuwenhoek 113:907–917. https://doi.org/10.1007/s10482-020-01400-x

    Article  CAS  PubMed  Google Scholar 

  28. Li G, Chen X, Li Y et al (2019) Flavobacterium viscosus sp. nov. and Flavobacterium tangerina sp. nov., from primates feces. Curr Microbiol 76:818–823. https://doi.org/10.1007/s00284-019-01692-x

    Article  CAS  PubMed  Google Scholar 

  29. Morimoto Y, Uwabe K, Tohya M et al (2020) Pseudomonas atagosis sp. nov., and Pseudomonas akappagea sp. nov., new soil bacteria isolated from samples on the Volcanic Island Izu Oshima. Tokyo Curr Microbiol 77:1909–1915. https://doi.org/10.1007/s00284-020-01943-2

    Article  CAS  PubMed  Google Scholar 

  30. Xiong Q, Liu Y, Zhao J et al (2021) Salimicrobium humidisoli sp. nov., isolated from saline-alkaline soil. Curr Microbiol 78:3292–3298. https://doi.org/10.1007/s00284-021-02551-4

    Article  CAS  PubMed  Google Scholar 

  31. Rodionova IA, Leyn SA, Burkart MD et al (2013) Novel inositol catabolic pathway in Thermotoga maritima. Environ Microbiol 15:2254–2266. https://doi.org/10.1111/1462-2920.12096

    Article  CAS  PubMed  Google Scholar 

  32. Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9:151–161. https://doi.org/10.1038/nrm2334

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes (Grant No. 2021J020), National Natural Science Foundation of China (Grant No. 41876114), and the Scientific Research Startup Foundation of Zhejiang Ocean University (Grant No. 11104150319/001).

Author information

Authors and Affiliations

Authors

Contributions

QY and XZ conceived the project and designed the experiments, XW, YY, FX and YD performed the experiments, XW, YY, FX and PX analyzed the data, XW, YD, QY and XZ drafted and revised the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Qiao Yang or Xiao-Ling Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequence and draft genome sequence of strain LZ-17T are MK093986 and SWKQ00000000, respectively.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7740 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ye, Y., Xu, FF. et al. Maritimibacter alexandrii sp. nov., a New Member of Rhodobacteraceae Isolated from Marine Phycosphere. Curr Microbiol 78, 3996–4003 (2021). https://doi.org/10.1007/s00284-021-02645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02645-z

Navigation