Skip to main content

Advertisement

Log in

Endophytic Microbial Diversity: A New Hope for the Production of Novel Anti-tumor and Anti-HIV Agents as Future Therapeutics

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cancer is a collective name for a variety of diseases that can begin in virtually every organ or body tissue as abnormal cells develop uncontrollably and ten million new cancer cases are diagnosed all over the world at present. Whereas HIV is a virus that makes people susceptible to infection and contributes to the condition of acquired immune deficiency syndrome (AIDS). Almost 37 million people are currently diagnosed with HIV and 1 million people die every year, which is the worst-case scenario. Potential medicinal compounds have played a crucial role in the production of certain clinically beneficial novel anti-cancer and anti-HIV agents that are produced from natural sources especially from plants. These include Taxol, Vinblastine, Podophyllotoxin, Betulinic acid, Camptothecin, and Vincristine, etc. In the past decades, bioactive compounds were extracted directly from the plant sources which was more time consuming, led to low yield productivity, high cost, and bad impact on biodiversity. Endophytes, the microorganisms that reside inside the host plant by not causing any kind of harm to them and have potential applications in agriculture, medicine, pollution, and food industries. Therefore, by isolating and characterizing novel endophytes from medicinal plants and extracting their secondary metabolites to produce useful bioactive compounds can be beneficial for well-being and society as a future therapeutics. This approach is not harmful to biodiversity economical, timesaving, low cost, and can lead to the discovery of various industrial and commercially important novel anti-tumor and anti-HIV agents in the future. The Himalayas are home to several medicinal plants and the endophytic microbial biodiversity of the Himalayan region is also not much explored yet. However, the effect of compounds from these endophytes on anticancer and antiviral activity, especially anti-HIV has been largely unexplored. Hence, the present review is designed to the exploration of endophytic microbial diversity that can give rise to the discovery of various novel potential industrially valuable bioactive compounds that can lessen the rate of such type of pandemic diseases in the future by providing low-cost future therapeutics in future.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HIV:

Human immunodeficiency virus

AIDS:

Acquired immune deficiency syndrome

WHO:

World Health Organization

ART:

Antiretroviral therapy

UNAIDS:

United Nations Programme on HIV and AIDS

IHR:

Indian Himalayan region

cART:

Combination antiretroviral therapy

DNA:

Deoxyribose nucleic acid

RT:

Reverse transcriptase

CD4:

Cluster of differentiation 4

LTR:

Long terminal repeats

ROS:

Reactive oxygen species

μg/L:

Microgram per litre

μg/g:

Microgram per gram

g/L:

Gram per litre

kg:

Kilogram

%:

Percent

References

  1. Li S-J, Zhang X, Wang X-H, Zhao C-Q (2018) Novel natural compounds from endophytic fungi with anticancer activity. Eur J Med Chem 156:316–343. https://doi.org/10.1016/j.ejmech.2018.07.015

    Article  CAS  PubMed  Google Scholar 

  2. Wink M et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour 3(2):90–100. https://doi.org/10.1079/pgr200575

    Article  CAS  Google Scholar 

  3. Roy A, Jauhari N, Bharadvaja N (2018) Medicinal plants as a potential source of chemopreventive agents. Anticancer Plants 2:109–139

    Google Scholar 

  4. Majumder A, Jha S (2009) Biotechnological approaches for the production of potential anticancer leads podophyllotoxin and paclitaxel: an overview. J Biol Sci 1(1):46–69

    Google Scholar 

  5. Xu XY et al (2019) Anti-HIV lignans from Justicia procumbens. Chin J Nat Med 17(12):945–952. https://doi.org/10.1016/S1875-5364(19)30117-7

    Article  PubMed  Google Scholar 

  6. Fabian L et al (2020) Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.111987

    Article  PubMed  Google Scholar 

  7. Zuo X et al (2018) Current insights into anti-HIV drug discovery and development: a review of recent patent literature (2014–2017). Expert Opin Ther Pat 28(4):299–316. https://doi.org/10.1080/13543776.2018.1438410

    Article  CAS  PubMed  Google Scholar 

  8. Bedi A, Adholeya A, Deshmukh SK (2018) Novel Anticancer compounds from Endophytic fungi. Curr Biotechnol 7(3):168–184. https://doi.org/10.2174/2211550105666160622080354

    Article  CAS  Google Scholar 

  9. Joseph B, Mini Priya R (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1(3):291–309. https://doi.org/10.3923/ajbmb.2011.291.309

    Article  Google Scholar 

  10. Rampelotto PH, de Siqueira Ferreira A, Barboza ADM, Roesch LFW (2013) Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems. Microb Ecol 66(3):593–607. https://doi.org/10.1007/s00248-013-0235-y

    Article  PubMed  Google Scholar 

  11. Chitale VS, Behera MD, Roy PS (2014) Future of endemic flora of biodiversity hotspots in India. PLoS ONE 9(12):e115264. https://doi.org/10.1371/journal.pone.0115264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanson T et al (2009) Warfare in biodiversity hotspots. Conserv Biol 23(3):578–587. https://doi.org/10.1111/j.1523-1739.2009.01166.x

    Article  PubMed  Google Scholar 

  13. Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54(5):408–417. https://doi.org/10.1002/jobm.201200579

    Article  CAS  PubMed  Google Scholar 

  14. Sheikha AF (2015) Rumex nervosus: an overview. Int J Innov Hortic 4(2):87–95

    Google Scholar 

  15. Pan SY et al (2010) New perspectives on innovative drug discovery: an overview. J Pharm Pharm Sci 13(3):450–471

    Article  PubMed  Google Scholar 

  16. Adefa Seid M, Tsegay BA (2011) Ethnobotanical survey of traditional medicinal plants in Tehuledere district, South Wollo, Ethiopia. J Med Plants Res 5(26):6233–6242. https://doi.org/10.5897/JMPR11.1070

    Article  Google Scholar 

  17. El-Sheikha AF (2017) Medicinal plants: ethno-uses to biotechnology era. In: Malik S (ed) Biotechnology and production of anti-cancer compounds. Springer International Publishing, Cham, pp 1–38

    Google Scholar 

  18. Gordaliza M (2007) Natural products as leads to anticancer drugs. Clin Transl Oncol 9(12):767–776. https://doi.org/10.1007/s12094-007-0138-9

    Article  CAS  PubMed  Google Scholar 

  19. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432(7019):829–837. https://doi.org/10.1038/nature03194

    Article  CAS  PubMed  Google Scholar 

  20. Wani MC, Taylor HL, Wall ME, Coggon P, Mcphail AT (1971) Plant antitumor agents.VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from taxus brevifolia2. J Am Chem Soc 93(9):2325–2327. https://doi.org/10.1021/ja00738a045

    Article  CAS  PubMed  Google Scholar 

  21. Seca AML, Pinto DCGA (2018) Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci. https://doi.org/10.3390/ijms19010263

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77(3):1561–1565. https://doi.org/10.1073/pnas.77.3.1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Torres K, Horwitz SB (1998) Mechanisms of Taxol-induced cell death are concentration dependent,". Cancer Res 58(16):3620–3626

    CAS  PubMed  Google Scholar 

  24. Danishefsky SJ et al (1996) Total synthesis of baccatin III and taxol. J Am Chem Soc 118(12):2843–2859. https://doi.org/10.1021/ja952692a

    Article  CAS  Google Scholar 

  25. Holton RA et al (1994) First total synthesis of taxol. 2. Completion of the C and D rings. J Am Chem Soc 116(4):1599–1600. https://doi.org/10.1021/ja00083a067

    Article  CAS  Google Scholar 

  26. Nicolaou KC et al (1994) Total synthesis of taxol. Nature 367(6464):630–634. https://doi.org/10.1038/367630a0

    Article  CAS  PubMed  Google Scholar 

  27. Itokawa H, Kuo Hsiung L (2003) Taxus, the genus Taxus. In: Itokawa H, Kuo Hsiung L (eds) Taxus. CRC Press, Boca Raton

    Chapter  Google Scholar 

  28. Wheeler NC et al (1992) Effects of genetic, epigenetic, and environmental factors on taxol content in taxus brevifolia and related species. J Nat Prod 55(4):432–440. https://doi.org/10.1021/np50082a005

    Article  CAS  PubMed  Google Scholar 

  29. Nadeem M, Rikhari HC, Kumar A, Palni LMS, Nandi SK (2002) Taxol content in the bark of Himalayan Yew in relation to tree age and sex. Phytochemistry 60(6):627–631. https://doi.org/10.1016/S0031-9422(02)00115-2

    Article  CAS  PubMed  Google Scholar 

  30. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502. https://doi.org/10.1128/mmbr.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268. https://doi.org/10.1021/np030397v

    Article  CAS  PubMed  Google Scholar 

  32. Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46(1):23–34. https://doi.org/10.1016/j.procbio.2010.09.004

    Article  CAS  Google Scholar 

  33. Elavarasi A, Rathna GS, Kalaiselvam M (2012) Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pac J Trop Biomed 2(2):S1081–S1085. https://doi.org/10.1016/S2221-1691(12)60365-7

    Article  Google Scholar 

  34. Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193(2):249–253. https://doi.org/10.1111/j.1574-6968.2000.tb09432.x

    Article  CAS  PubMed  Google Scholar 

  35. Sun D, Ran X, Wang J (2008) “Isolation and identification of a taxol-producing endophytic fungus from Podocarpus. Acta Microbiol Sin 48(5):589–595

    CAS  Google Scholar 

  36. Kumar G, Chandra P, Choudhary M (2017) Chemical science review and letters endophytic fungi: a potential source of bioactive compounds. Chem Sci Rev Lett 6(24):2373–2381

    CAS  Google Scholar 

  37. Kumar P et al (2019) Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol Rep 24:e00395. https://doi.org/10.1016/j.btre.2019.e00395

    Article  Google Scholar 

  38. Ueda JY et al (2002) Antiproliferative activity of Vietnamese medicinal plants. Biol Pharm Bull 25(6):753–760. https://doi.org/10.1248/bpb.25.753

    Article  CAS  PubMed  Google Scholar 

  39. Retna AM, Ethalsa P (2013) A review of the taxonomy, ethnobotany, chemistry and pharmacology of Catharanthus roseus (Apocyanaceae). IJERT 2(10):3899–3912

    Google Scholar 

  40. Deshmukh SK et al (2009) Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers 6(5):784–789. https://doi.org/10.1002/cbdv.200800103

    Article  CAS  PubMed  Google Scholar 

  41. Omeje EO et al (2017) Endophytic fungi as alternative and reliable sources for potent anticancer agents. In: Badria FA (ed) Natural products and cancer drug discovery. InTech, New York

    Google Scholar 

  42. Senthil Kumaran R, Muthumary J, Hur BK (2008) Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng. Life Sci 8(4):438–446. https://doi.org/10.1002/elsc.200800019

    Article  CAS  Google Scholar 

  43. Kim SU, Strobel G, Ford E (1999) Screening of taxol-producing endophytic fungi from Ginko biloba and Taxus cuspidata in Korea. Agric Chem Biotechnol 42(2):97–99

    CAS  Google Scholar 

  44. Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24(5):717–724. https://doi.org/10.1007/s11274-007-9530-4

    Article  CAS  Google Scholar 

  45. Rehman S et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl Biokhim Mikrobiol 44(2):225–231. https://doi.org/10.1134/s0003683808020130

    Article  CAS  PubMed  Google Scholar 

  46. Amna T et al (2006) Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol 52(3):189–196. https://doi.org/10.1139/w05-122

    Article  CAS  PubMed  Google Scholar 

  47. Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20(3–4):337–342. https://doi.org/10.1016/j.phymed.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  48. Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21(4):534–540. https://doi.org/10.1016/j.phymed.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  49. Arora J, Ramawat KG (2017) “An introduction to endophytes. Springer, Cham, pp 1–23

    Google Scholar 

  50. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8(9):e71805. https://doi.org/10.1371/journal.pone.0071805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parthasarathy R, Shanmuganathan R, Pugazhendhi A (2020) Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line. Anal Biochem. https://doi.org/10.1016/j.ab.2019.113530

    Article  PubMed  Google Scholar 

  52. Kumara PM, Soujanya KN, Ravikanth G, Vasudeva R, Ganeshaiah KN, Shaanker RU (2014) Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine 21(4):541–546. https://doi.org/10.1016/j.phymed.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  53. Jouda JB et al (2016) Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut. BMC Complement. Altern. Med. 16(1):462. https://doi.org/10.1186/s12906-016-1454-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goutam J et al (2017) Isolation and characterization of ‘Terrein’ an antimicrobial and antitumor compound from endophytic fungus Aspergillus terreus (JAS-2) associated from Achyranthus aspera Varanasi, India. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01334

    Article  PubMed  PubMed Central  Google Scholar 

  55. Taware R et al (2014) Isolation, purification and characterization of Trichothecinol-A produced by endophytic fungus Trichothecium sp. and its antifungal, anticancer and antimetastatic activities. Sustain Chem Process 2(1):8. https://doi.org/10.1186/2043-7129-2-8

    Article  CAS  Google Scholar 

  56. Khan MIH, Sohrab MH, Rony SR, Tareq FS, Hasan CM, Mazid MA (2016) Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol Rep 3:861–865. https://doi.org/10.1016/j.toxrep.2016.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li X, Guo Z, Deng Z, Yang J, Zou K (2015) A new α-pyrone derivative from endophytic fungus Pestalotiopsis microspora. Rec Nat Prod 9(4):503–508

    CAS  Google Scholar 

  58. Verekar SA et al (2014) Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. J Antibiot (Tokyo) 67(10):697–701. https://doi.org/10.1038/ja.2014.58

    Article  CAS  Google Scholar 

  59. Mishra PD et al (2013) Anti-inflammatory and anti-diabetic naphtha­quinones from an endophytic fungus Dendryphion nanum (Nees) S. Hughes. Indian J Chem 52B:565–567

    CAS  Google Scholar 

  60. Sharma N et al (2018) New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. J Appl Microbiol 125(1):111–120. https://doi.org/10.1111/jam.13764

    Article  CAS  PubMed  Google Scholar 

  61. Arora D et al (2016) Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine 23(12):1312–1320. https://doi.org/10.1016/j.phymed.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  62. Kusari S, Zühlke S, Košuth J, Čellárová E, Spiteller M (2009) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72(10):1825–1835. https://doi.org/10.1021/np9002977

    Article  CAS  PubMed  Google Scholar 

  63. Bunyapaiboonsri T, Yoiprommarat S, Srikitikulchai P, Srichomthong K, Lumyong S (2010) Oblongolides from the endophytic fungus Phomopsis sp. BCC 9789. J Nat Prod 73(1):55–59. https://doi.org/10.1021/np900650c

    Article  CAS  PubMed  Google Scholar 

  64. Das S, Krishi Viswavidyalaya C, Sharangi AB (2017) Madagascar periwinkle (Catharanthus roseus L): diverse medicinal and therapeutic benefits to humankind. J Pharmacogn Phytochem 6(5):1695–1701

    CAS  Google Scholar 

  65. Kumar A (2016) 3. IJMPS - vincristine and vinblastine a review.

  66. Zhao J et al Endophytic fungi for producing bioactive compounds originally from their host plants Gamma-ray burst polarimeter POLAR view project biology of secondary metabolism in plant-microbe interactions (BSMPMI) view project endophytic fungi for producing bioactive compounds originally from their host plants

  67. Sharma V, Kaur H, Kumar T, Mishra T (2016) Traditional indian herb Cathranthus roseus used as cancer treatment: a review. Int J Pharmacogn Phytochem Res 8(12):1926–1928

    Google Scholar 

  68. Bo G, Haiyan L, Lingqi Z (1998) Isolation of an fungus producting vinbrastine. J Yunnan Univ 20(3):214–215

    Google Scholar 

  69. Lingqi Z et al (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Tradit Herb Drugs 31(11):805–807

    Google Scholar 

  70. Xianzhi Y, Lingqi Z, Bo G, Shiping G (2004) Preliminary study of a vincristine-proudcing endophytic fungus isolated from leaves of Catharanthus roseus. Chin Tradit Herb Drugs 35(1):79–81

    Google Scholar 

  71. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  72. Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43(1):218–227. https://doi.org/10.1021/ci0200467

    Article  CAS  PubMed  Google Scholar 

  73. Weiss SG, Tin-Wa M, Perdue RE, Farnsworth NR (1975) Potential anticancer agents II: antitumor and cytotoxic lignans from Linum album (Linaceae). J Pharm Sci 64(1):95–98. https://doi.org/10.1002/jps.2600640119

    Article  CAS  PubMed  Google Scholar 

  74. Konuklugil B (1996) Aryltetralin lignans from genus Linum. Fitoter 67(4):379–381

    CAS  Google Scholar 

  75. Ayres DC, Loike JD (1990) Lignans: chemical, biological, and clinical properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  76. Schacter L (1996) Etoposide phosphate: what, why, where, and how? Semin Oncol 23:1–7

    CAS  PubMed  Google Scholar 

  77. Guerram M, Jiang ZZ, Zhang LY (2012) Podophyllotoxin, a medicinal agent of plant origin: past, present and future. Chin J Nat Med 10(3):161–169. https://doi.org/10.3724/SP.J.1009.2012.00161

    Article  CAS  Google Scholar 

  78. Gordaliza M, García PA, Miguel Del Corral JM, Castro MA, Gómez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44(4):441–459. https://doi.org/10.1016/j.toxicon.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  79. Xianzhi Y, Shiping G, Lingqi Z, Hua S (2003) Select of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat Prod Res Dev 15(5):419–422

    Google Scholar 

  80. Nadeem M (2012) Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res. https://doi.org/10.5897/ajmr11.1596

    Article  Google Scholar 

  81. Yousefzadi M et al (2010) Podophyllotoxin: current approaches to its biotechnological production and future challenges. Eng Life Sci 10(4):281–292. https://doi.org/10.1002/elsc.201000027

    Article  CAS  Google Scholar 

  82. Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95(1):47–59. https://doi.org/10.1007/s00253-012-4128-7

    Article  CAS  PubMed  Google Scholar 

  83. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922:1–10. https://doi.org/10.1111/j.1749-6632.2000.tb07020.x

    Article  CAS  PubMed  Google Scholar 

  84. Clarance P, Khusro A, Lalitha J, Sales J, Paul A (2019) Optimization of camptothecin production and biomass yield from endophytic fungus Fusarium solani strain ATLOY-8 ARTICLE INFO. J Appl Pharm Sci 9(10):35–046. https://doi.org/10.7324/JAPS.2019.91005

    Article  CAS  Google Scholar 

  85. Zheng J, Zhou Y, Li Y, Xu DP, Li S, Bin Li H (2016) Spices for prevention and treatment of cancers. Nutrients 8:495. https://doi.org/10.3390/nu8080495

    Article  CAS  PubMed Central  Google Scholar 

  86. Manayi A, Nabavi SM, Setzer WN, Jafari S (2019) Piperine as a potential anti-cancer agent: a review on preclinical studies. Curr Med Chem 25(37):4918–4928. https://doi.org/10.2174/0929867324666170523120656

    Article  CAS  Google Scholar 

  87. Hwang YP et al (2011) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCα/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicol Lett 203(1):9–19. https://doi.org/10.1016/j.toxlet.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  88. Mérino D, Lalaoui N, Morizot A, Solary E, Micheau O (2007) TRAIL in cancer therapy: present and future challenges. Expert Opin Therap Targets 11(10):1299–1314. https://doi.org/10.1517/14728222.11.10.1299

    Article  Google Scholar 

  89. Abdelhamed S et al (2014) Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res 34(4):1893–1899

    CAS  PubMed  Google Scholar 

  90. yun Ouyang D et al (2013) Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol. 60:424–430. https://doi.org/10.1016/j.fct.2013.08.007

    Article  CAS  Google Scholar 

  91. Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51. https://doi.org/10.3389/fnmol.2011.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Doucette CD, Hilchie AL, Liwski R, Hoskin DW (2013) Piperine, a dietary phytochemical, inhibits angiogenesis. J Nutr Biochem 24(1):231–239. https://doi.org/10.1016/j.jnutbio.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  93. Kim YS, Farrar W, Colburn NH, Milner JA (2012) Cancer stem cells: potential target for bioactive food components. J Nutr Biochem 23(7):691–698. https://doi.org/10.1016/j.jnutbio.2012.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li S, Lei Y, Jia Y, Li N, Wink M, Ma Y (2011) Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine 19(1):83–87. https://doi.org/10.1016/j.phymed.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  95. Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63(12):1692–1695. https://doi.org/10.1021/np0002942

    Article  CAS  PubMed  Google Scholar 

  96. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44(2):136–142. https://doi.org/10.1134/S0003683808020026

    Article  CAS  Google Scholar 

  97. Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11(4):487–505. https://doi.org/10.1007/s11101-012-9260-6

    Article  CAS  Google Scholar 

  98. Al-Sokari SS (2015) In vitro antimicrobial activity of crude extracts of some medicinal plants from Al-Baha region in Saudi Arabia. J. Food Nutr. Sci. 3(1):74

    CAS  Google Scholar 

  99. Wang, et al (2014) An endophytic fungus in Ficus carica and its secondary metabolites. Mycosystema. https://doi.org/10.13346/j.mycosystema.130182.

  100. Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P (2019) Bioactive products from plant-endophytic Gram-positive bacteria. Front Microbiol 10:463. https://doi.org/10.3389/fmicb.2019.00463

    Article  PubMed  PubMed Central  Google Scholar 

  101. Taechowisan T, Lu C, Shen Y, Lumyong S (2007) Antitumor activity of 4-Arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. J Cancer Res Ther 3(2):86–91. https://doi.org/10.4103/0973-1482.34685

    Article  CAS  PubMed  Google Scholar 

  102. Vu HNT et al (2018) Antimicrobial and cytotoxic properties of bioactive metabolites produced by Streptomyces cavourensis YBQ59 Isolated from Cinnamomum cassia Prels in Yen Bai Province of Vietnam. Curr Microbiol 75(10):1247–1255. https://doi.org/10.1007/s00284-018-1517-x

    Article  CAS  PubMed  Google Scholar 

  103. Pang X et al (2017) Metabolites from the plant endophytic fungus Aspergillus sp. CPCC 400735 and their anti-HIV activities. J Nat Prod 80(10):2595–2601. https://doi.org/10.1021/acs.jnatprod.6b00878

    Article  CAS  PubMed  Google Scholar 

  104. Ornano L, Feroci M, Guarcini L, Venditti A, Bianco A (2018) Anti-HIV agents from nature: natural compounds from Hypericum hircinum and carbocyclic nucleosides from iridoids. Stud Nat Prod Chem 56:173–228

    Article  CAS  Google Scholar 

  105. Kashiwada Y et al (1998) Anti-AIDS agents, 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod 61(9):1090–1095. https://doi.org/10.1021/np9800710

    Article  CAS  PubMed  Google Scholar 

  106. Fujioka T et al (1994) Anti-aids agents, 11. betulinic acid and platanic acid as anti-HIV principles from syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 57(2):243–247. https://doi.org/10.1021/np50104a008

    Article  CAS  PubMed  Google Scholar 

  107. Moghaddam MG, Ahmad FBH, Samzadeh-Kermani A (2012) Biological activity of betulinic acid: a review. Pharmacology Pharmacy 3(2):119–123. https://doi.org/10.4236/pp.2012.32018

    Article  CAS  Google Scholar 

  108. Zhao H, Holmes SS, Baker GA, Challa S, Bose HS, Song Z (2012) Ionic derivatives of betulinic acid as novel HIV-1 protease inhibitors. J Enzyme Inhib Med Chem 27(5):715–721. https://doi.org/10.3109/14756366.2011.611134

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61(2):207–215. https://doi.org/10.1007/s13213-010-0120-6

    Article  CAS  Google Scholar 

  110. Morandini LMB et al (2016) Lanostane-type triterpenes from the fungal endophyte Scleroderma UFSMSc1 (Persoon) Fries. Bioorg Med Chem Lett 26:1173–1176. https://doi.org/10.1016/j.bmcl.2016.01.044

    Article  CAS  PubMed  Google Scholar 

  111. Li G, Kusari S, Kusari P, Kayser O, Spiteller M (2015) Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. J Nat Prod 78(8):2128–2132. https://doi.org/10.1021/acs.jnatprod.5b00170

    Article  CAS  PubMed  Google Scholar 

  112. Peyrat LA, Eparvier V, Eydoux C, Guillemot JC, Litaudon M, Stien D (2017) Betulinic acid, the first lupane-type triterpenoid isolated from both a Phomopsis sp. and its host plant diospyros carbonaria benoist. Chem Biodivers 14(1):e1600171. https://doi.org/10.1002/cbdv.201600171

    Article  CAS  Google Scholar 

  113. Rang L, Chang-Hui C, Cheng AIX, Jian-Ping Z (2010) Structural origins of the differential antioxidative activities between baicalein and baicalin. Chin J Magn Reson 27:132–140

    Google Scholar 

  114. Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM (2000) Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun 276(2):534–538. https://doi.org/10.1006/bbrc.2000.3485

    Article  CAS  PubMed  Google Scholar 

  115. Baylor NW, Fu T, Yan YD, Ruscetti FW (1992) Inhibition of human T cell leukemia virus by the plant flavonoid baicalin (7-glucuronic acid, 5, 6-dihydroxyflavone). J Infect Dis 165(3):433–437. https://doi.org/10.1093/infdis/165.3.433

    Article  CAS  PubMed  Google Scholar 

  116. Li BQ, Fu T, Yan YD, Baylor NW, Ruscetti FW, Kung HF (1993) Inhibition of HIV infection by baicalin—a flavonoid compound purified from Chinese herbal medicine. Cell Mol Biol Res 39(2):119–124

    CAS  PubMed  Google Scholar 

  117. Ng TB, Huang B, Fong WP, Yeung HW (1997) Anti-human immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors. Life Sci. 61(10):933–949. https://doi.org/10.1016/S0024-3205(97)00245-2

    Article  CAS  PubMed  Google Scholar 

  118. Ferdous KJ, Afroz F, Islam MR, Mazid MA, Sohrab MH (2019) Isolated endophytic fungi from the plant Curcuma longa and their potential bioactivity—a review. Pharmacol Pharm 10(05):244–270. https://doi.org/10.4236/pp.2019.105021

    Article  CAS  Google Scholar 

  119. Xiuyun J, Youjian F, Fengmei C, Jihong J (2014) Volatile constituents and their fibrinolytic activity of endophytic fungus Fusarium sp. GI024 from Ginkgo biloba. Wei Sheng Wu Xue Tong Bao 33(6):8–11

    Google Scholar 

  120. Zhang D et al (2015) Pericoannosin A, a polyketide synthase-nonribosomal peptide synthetase hybrid metabolite with new carbon skeleton from the endophytic fungus Periconia sp. Org Lett 17(17):4304–4307. https://doi.org/10.1021/acs.orglett.5b02123

    Article  CAS  PubMed  Google Scholar 

  121. Ding L et al (2010) Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic Med Chem Lett 20(22):6685–6687. https://doi.org/10.1016/j.bmcl.2010.09.010

    Article  CAS  Google Scholar 

  122. Umashankar T, Govindappa M, Ramachandra Y (2012) In vitro antioxidant and anti-HIV activity of endophytic coumarin from Crotalaria pallida Aiton. Planta Med. https://doi.org/10.1055/s-0032-1307610

    Article  Google Scholar 

  123. Liu L et al (2009) Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici. Org Lett 11(13):2836–2839. https://doi.org/10.1021/ol901039m

    Article  CAS  PubMed  Google Scholar 

  124. Prasad S, Tyagi AK (2015) Curcumin and its analogues: a potential natural compound against HIV infection and AIDS. Food Funct 6(11):3412–3419. https://doi.org/10.1039/c5fo00485c

    Article  CAS  PubMed  Google Scholar 

  125. Hewlings S, Kalman D (2017) Curcumin: a review of its effects on human health. Foods 6(10):92. https://doi.org/10.3390/foods6100092

    Article  CAS  PubMed Central  Google Scholar 

  126. Kumari N et al (2015) Inhibition of HIV-1 by curcumin A, a novel curcumin analog. Drug Des Devel Ther 9:5051–5060. https://doi.org/10.2147/DDDT.S86558

    Article  PubMed  PubMed Central  Google Scholar 

  127. Emerman M, Malim MH (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280(5371):1880–1884. https://doi.org/10.1126/science.280.5371.1880

    Article  CAS  PubMed  Google Scholar 

  128. Ali A, Banerjea AC (2016) Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci Rep. https://doi.org/10.1038/srep27539

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wiggers HJ, Zaioncz S, Cheleski J, Mainardes RM, Khalil NM (2017) Curcumin, a multitarget phytochemical. Stud Nat Prod Chem 53:243–276

    Article  CAS  Google Scholar 

  130. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int. https://doi.org/10.1155/2014/186864

    Article  PubMed Central  Google Scholar 

  131. Ding L, Maier A, Fiebig HH, Lin WH, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9(11):4029–4031. https://doi.org/10.1039/c1ob05283g

    Article  CAS  PubMed  Google Scholar 

  132. Zhang Q et al (2012) N-N-coupled indolo-sesquiterpene atropo-diastereomers from a marine-derived actinomycete. European J Org Chem 2012(27):5256–5262. https://doi.org/10.1002/ejoc.201200599

    Article  CAS  Google Scholar 

  133. Rosen BR, Werner EW, O’Brien AG, Baran PS (2014) Total synthesis of dixiamycin B by electrochemical oxidation. J Am Chem Soc 136(15):5571–5574. https://doi.org/10.1021/ja5013323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SPS (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13(21):5892–5908. https://doi.org/10.1016/j.bmc.2005.05.066

    Article  CAS  PubMed  Google Scholar 

  135. Kala CP (2000) Status and conservation of rare and endangered medicinal plants in the Indian trans-Himalaya. Biol Conserv 93(3):371–379. https://doi.org/10.1016/S0006-3207(99)00128-7

    Article  Google Scholar 

  136. Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microb Ecol 12(1):65–78. https://doi.org/10.1007/BF02153223

    Article  CAS  PubMed  Google Scholar 

  137. Pimentel MR, Molina G, Dionísio AP, Maróstica-Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:1–11. https://doi.org/10.4061/2011/576286

    Article  CAS  Google Scholar 

  138. Patil RH, Patil MP, Maheshwari VL (2016) Bioactive secondary metabolites from endophytic fungi: a review of biotechnological production and their potential applications. Stud Nat Prod Chem 49:189–205

    Article  CAS  Google Scholar 

  139. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168. https://doi.org/10.2174/138955711794519492

    Article  CAS  PubMed  Google Scholar 

  140. Balandrin MF, Klocke JA (1988) Medicinal, aromatic, and industrial materials from plants. Springer, Berlin, pp 3–36

    Google Scholar 

  141. Nadeem M, Palni LMS, Kumar A, Nandi SK (2007) Podophyllotoxin content, above- and belowground biomass in relation to altitude in Podophyllum hexandrum populations from Kumaun region of the Indian Central Himalaya. Planta Med 73(4):388–391. https://doi.org/10.1055/s-2007-967154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Prof. P. K. Khosla, Hon’ble Vice-Chancellor, Shoolini University of Biotechnology and Management Sciences, Solan and Foundation for Life Sciences and Business Management (FLSBM), Solan (H.P.)-India for providing financial support and necessary facilities. We would also like to thank Dr. Vikram Thakur, Senior Research Fellow, Department of Virology, PGIMER, Chandigarh for finalizing the content of the review. All authors would also like to thanks Prof. Saurabh Kulshrestha, Dean Research, and development, Shoolini University, Solan (H.P.), India for finalizing the overall content of the manuscript.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikram Thakur or Pradeep Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banyal, A., Thakur, V., Thakur, R. et al. Endophytic Microbial Diversity: A New Hope for the Production of Novel Anti-tumor and Anti-HIV Agents as Future Therapeutics. Curr Microbiol 78, 1699–1717 (2021). https://doi.org/10.1007/s00284-021-02359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02359-2

Navigation