Skip to main content
Log in

Microbial Community Structure and Metabolic Potential at the Initial Stage of Soil Development of the Glacial Forefields in Svalbard

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial communities have been identified as the primary inhabitants of Arctic forefields. However, the metabolic potential of microbial communities in these newly exposed soils remains underexplored due to limited access. Here, we sampled the very edge of the glacial forefield in Svalbard and performed the 16S rRNA genes and metagenomic analysis to illustrate the ecosystem characteristics. Burkholderiales and Micrococcales were the dominant bacterial groups at the initial stage of soil development of glacial forefields. 214 metagenome-assembled genomes were recovered from glacier forefield microbiome datasets, including only 2 belonging to archaea. Analysis of these metagenome-assembled genomes revealed that 41% of assembled genomes had the genetic potential to use nitrate and nitrite as electron acceptors. Metabolic pathway reconstruction for these microbes suggested versatility for sulfide and thiosulfate oxidation, H2 and CO utilization, and CO2 fixation. Our results indicate the importance of anaerobic processes in elemental cycling in the glacial forefields. Besides, a range of genes related to adaption to low temperature and other stresses were detected, which revealed the presence of diverse mechanisms of adaption to the extreme environment of Svalbard. This research provides ecological insight into the initial stage of the soil developed during the retreating of glaciers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the NODE database (https://www.biosino.org/node/) under project OEP003241.

Code Availability

Not applicable.

References

  1. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O, Hare W, Huq S, Karoly D, Kattsov V, Kundzewicz Z, Liu J, Lohmann U, Manning M, Matsuno T, Menne B, Metz B, Mirza M, Nicholls N, Nurse L, Pachauri R, Palutikof J, Parry M, Qin D, Ravindranath N, Reisinger A, Ren J, Riahi K, Rosenzweig C, Rusticucci M, Schneider S, Sokona Y, Solomon S, Stott P, Stouffer R, Sugiyama T, Swart R, Tirpak D, Vogel C, Yohe G (eds) (2008) IPCC, 2007: climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, pp 30

  2. Nash MV, Anesio AM, Barker G, Tranter M, Varliero G, Eloe-Fadrosh EA, Nielsen T, Turpin-Jelfs T, Benning LG, Sánchez-Baracaldo P (2018) Metagenomic insights into diazotrophic communities across Arctic glacier forefields. FEMS Microbiology Ecology 94: fiy114. https://doi.org/10.1093/femsec/fiy114

  3. Schütte UME, Abdo Z, Foster J, Ravel J, Bunge J, Solheim B, Forney LJ (2010) Bacterial diversity in a glacier foreland of the high Arctic. Mol Ecol 19:54–66. https://doi.org/10.1111/j.1365-294X.2009.04479.x

    Article  PubMed  Google Scholar 

  4. Schmidt S, Reed SC, Nemergut DR, Stuart Grandy A, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer A, Neff J (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proceedings of the Royal Society B: Biological Sciences 275:2793–2802. https://doi.org/10.1098/rspb.2008.0808

    Article  CAS  PubMed Central  Google Scholar 

  5. Kwon HY, Jung JY, Kim O-S, Laffly D, Lim HS, Lee YK (2015) Soil development and bacterial community shifts along the chronosequence of the Midtre Lovénbreen glacier foreland in Svalbard. Journal of Ecology and Environment 38:461–476. https://doi.org/10.5141/ecoenv.2015.049

    Article  Google Scholar 

  6. Kim M, Jung JY, Laffly D, Kwon HY, Lee YK (2016) Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic. FEMS Microbiology Ecology 93: fiw213. https://doi.org/10.1093/femsec/fiw213

  7. Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J (2013) The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10:3983–3996. https://doi.org/10.5194/bg-10-3983-2013

    Article  Google Scholar 

  8. Duc L, Noll M, Meier BE, Bürgmann H, Zeyer J (2009) High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb Ecol 57:179–190. https://doi.org/10.1007/s00248-008-9408-5

    Article  PubMed  Google Scholar 

  9. Brankatschk R, Töwe S, Kleineidam K, Schloter M, Zeyer J (2011) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 5:1025–1037. https://doi.org/10.1038/ismej.2010.184

    Article  CAS  PubMed  Google Scholar 

  10. Trivedi CB, Stamps BW, Lau GE, Grasby SE, Templeton AS, Spear JR (2020) Microbial metabolic redundancy is a key mechanism in a sulfur-rich glacial ecosystem. Msystems 5:e00504-00520. https://doi.org/10.1128/mSystems.00504-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039. https://doi.org/10.1128/AEM.01396-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niederberger TD, Perreault NN, Lawrence JR, Nadeau JL, Mielke RE, Greer CW, Andersen DT, Whyte LG (2009) Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic. Environ Microbiol 11:616–629. https://doi.org/10.1111/j.1462-2920.2008.01833.x

    Article  CAS  PubMed  Google Scholar 

  13. Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem MW, Bay SK, Islam ZF, Jordaan K, Vikram S (2021) Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci 118:e2025322118. https://doi.org/10.1073/pnas.2025322118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolicka D, Zdanowski MK, Żmuda-Baranowska MJ, Poszytek A, Grzesiak J (2014) Sulphate reducing activity detected in soil samples from Antarctica, Ecology Glacier forefield, King George Island. Pol J Microbiol 63:443–450

    Article  PubMed  Google Scholar 

  15. Bay SK, Dong X, Bradley JA, Leung PM, Grinter R, Jirapanjawat T, Arndt SK, Cook PL, LaRowe DE, Nauer PA (2021) Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol 6:246–256. https://doi.org/10.1038/s41564-020-00811-w

    Article  CAS  PubMed  Google Scholar 

  16. Dunham EC, Dore JE, Skidmore ML, Roden EE, Boyd ES (2021) Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc Natl Acad Sci 118:e2007051117. https://doi.org/10.1073/pnas.2007051117

    Article  CAS  PubMed  Google Scholar 

  17. Bradley JA, Singarayer JS, Anesio AM (2014) Microbial community dynamics in the forefield of glaciers. Proceedings of the Royal Society B: Biological Sciences 281:20140882. https://doi.org/10.1098/rspb.2014.0882

    Article  PubMed Central  Google Scholar 

  18. Macdonald ML, Wadham JL, Telling J, Skidmore ML (2018) Glacial erosion liberates lithologic energy sources for microbes and acidity for chemical weathering beneath glaciers and ice sheets. Frontiers in Earth Science: 212. https://doi.org/10.3389/feart.2018.00212

  19. Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, Montgomery K, Lines T, Beardall J, Van Dorst J (2017) Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552:400–403. https://doi.org/10.1038/nature25014

    Article  CAS  PubMed  Google Scholar 

  20. Cordero PR, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, King GM, Greening C (2019) Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J 13:2868–2881. https://doi.org/10.1038/s41396-019-0479-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Franzetti A, Pittino F, Gandolfi I, Azzoni R, Diolaiuti G, Smiraglia C, Pelfini M, Compostella C, Turchetti B, Buzzini P (2020) Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. FEMS Microbiology Ecology 96: fiaa165. https://doi.org/10.1093/femsec/fiaa165

  22. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690. https://doi.org/10.1038/nrmicro3522

    Article  CAS  PubMed  Google Scholar 

  23. Koo H, Hakim JA, Morrow CD, Crowley MR, Andersen DT, Bej AK (2018) Metagenomic analysis of microbial community compositions and cold-responsive stress genes in selected Antarctic lacustrine and soil ecosystems. Life 8:29. https://doi.org/10.3390/life8030029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Cha Q-Q, Dang Y-R, Chen X-L, Wang M, McMinn A, Espina G, Zhang Y-Z, Blamey JM, Qin Q-L (2019) Reconstruction of the functional ecosystem in the high light, low temperature union glacier region. Antarctica Frontiers in Microbiology 10:2408. https://doi.org/10.3389/fmicb.2019.02

    Article  PubMed  Google Scholar 

  25. Kumar V, Kumar S, Singh D (2022) Metagenomic insights into Himalayan glacial and kettle lake sediments revealed microbial community structure, function, and stress adaptation strategies. Extremophiles 26:1–11. https://doi.org/10.1007/s00792-021-01252-x

    Article  CAS  Google Scholar 

  26. König M, Nuth C, Kohler J, Moholdt G, Pettersen R (2014) A digital glacier database for Svalbard. In: Kargel J, Leonard GJ, Bishop MP et al (eds) Global land ice measurements from space. Springer, Berlin, Heidelberg, pp 229–239

    Chapter  Google Scholar 

  27. Sun M, Xiao T, Ning Z, Xiao E, Sun W (2015) Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Appl Microbiol Biotechnol 99:2911–2922. https://doi.org/10.1007/s00253-014-6194-5

    Article  CAS  PubMed  Google Scholar 

  28. Natarajan VP, Zhang X, Morono Y, Inagaki F, Wang F (2016) A modified SDS-based DNA extraction method for high quality environmental DNA from seafloor environments. Front Microbiol 7:986. https://doi.org/10.3389/fmicb.2016.00986

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin M (2011) Cutadapt removes adapter sequsences from high-throughput sequencing reads. EMBnet journal 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  31. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:1–17. https://doi.org/10.1186/s40168-018-0470-z

    Article  Google Scholar 

  33. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, Øvreås L, Steen IH, Thorseth IH, Pedersen RB (2012) Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci 109:E2846–E2855. https://doi.org/10.1073/pnas.1207574109

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. https://doi.org/10.1093/bioinformatics/btv033

    Article  CAS  PubMed  Google Scholar 

  37. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM (2021) Twelve years of SAMtools and BCFtools. Gigascience 10: giab008. https://doi.org/10.1093/gigascience/giab008

  39. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z (2019) MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. https://doi.org/10.7717/peerj.7359

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230. https://doi.org/10.1093/bioinformatics/bts429

    Article  CAS  PubMed  Google Scholar 

  41. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H (2020) KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36:2251–2252. https://doi.org/10.1093/bioinformatics/btz859

    Article  CAS  PubMed  Google Scholar 

  42. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  43. Buchfink B, Reuter K, Drost HG (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18:366–368. https://doi.org/10.1038/s41592-021-01101-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE (2016) Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777. https://doi.org/10.1038/ismej.2015.153

    Article  CAS  PubMed  Google Scholar 

  45. Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146. https://doi.org/10.1038/nmeth.3103

    Article  CAS  PubMed  Google Scholar 

  46. Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF (2018) Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3:836–843. https://doi.org/10.1038/s41564-018-0171-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olm MR, Brown CT, Brooks B, Banfield JF (2017) dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. https://doi.org/10.1038/ismej.2017.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P (2021) GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 50:D785–D794. https://doi.org/10.1093/nar/gkab776

    Article  CAS  PubMed Central  Google Scholar 

  50. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases1. FEMS Microbiol Rev 25:455–501. https://doi.org/10.1111/j.1574-6976.2001.tb00587.x

    Article  CAS  PubMed  Google Scholar 

  53. Berney M, Greening C, Hards K, Collins D, Cook GM (2014) Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ Microbiol 16:318–330. https://doi.org/10.1111/1462-2920.12320

    Article  CAS  PubMed  Google Scholar 

  54. Zheng Y, Kahnt J, Kwon IH, Mackie RI, Thauer RK (2014) Hydrogen formation and its regulation in ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase. J Bacteriol 196:3840–3852. https://doi.org/10.1128/JB.02070-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202. https://doi.org/10.1074/jbc.272.1.196

    Article  CAS  PubMed  Google Scholar 

  56. Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12:2658–2676. https://doi.org/10.1111/j.1462-2920.2010.02235.x

    Article  CAS  PubMed  Google Scholar 

  57. Kappes RM, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, Bremer E (1999) Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 32:203–216. https://doi.org/10.1046/j.1365-2958.1999.01354.x

    Article  CAS  PubMed  Google Scholar 

  58. Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606. https://doi.org/10.1146/annurev.mi.45.100191.003033

    Article  CAS  PubMed  Google Scholar 

  59. Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71. https://doi.org/10.1111/j.1574-6976.2002.tb00598.x

    Article  CAS  PubMed  Google Scholar 

  60. Huisman GW, Kolter R (1994) Sensing starvation: a homoserine lactone—dependent signaling pathway in Escherichia coli. Science 265:537–539. https://doi.org/10.1126/science.7545940

    Article  CAS  PubMed  Google Scholar 

  61. Matin A (1991) The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol 5:3–10. https://doi.org/10.1111/j.1365-2958.1991.tb01819.x

    Article  CAS  PubMed  Google Scholar 

  62. Fujisawa M, Watanabe M, Choi S-K, Teramoto M, Ohyama K, Misawa N (2008) Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J Biosci Bioeng 105:636–641. https://doi.org/10.1007/s00203-007-0262-5

    Article  CAS  PubMed  Google Scholar 

  63. Svoboda D, Smith CA, Taylor J, Sancar A (1993) Effect of sequence, adduct type, and opposing lesions on the binding and repair of ultraviolet photodamage by DNA photolyase and (A) BC excinuclease. J Biol Chem 268:10694–10700. https://doi.org/10.1016/S0021-9258(18)82253-0

    Article  CAS  PubMed  Google Scholar 

  64. Garrido-Benavent I, Pérez-Ortega S, Durán J, Ascaso C, Pointing SB, Rodríguez-Cielos R, Navarro F, de Los RA (2020) Differential colonization and succession of microbial communities in rock and soil substrates on a maritime antarctic glacier forefield. Front Microbiol 11:126. https://doi.org/10.3389/fmicb.2020.00126

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jiang Y, Lei Y, Yang Y, Korpelainen H, Niinemets Ü, Li C (2018) Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence. Soil Biol Biochem 118:207–216. https://doi.org/10.1016/j.soilbio.2017.12.019

    Article  CAS  Google Scholar 

  66. Vinšová P, Kohler T, Simpson M, Hajdas I, Yde J, Falteisek L, Žárský J, Yuan T, Tejnecký V, Mercl F (2022) The biogeochemical legacy of arctic subglacial sediments exposed by glacier retreat. Global Biogeochemical Cycles 36: e2021GB007126. https://doi.org/10.1029/2021GB007126

  67. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. https://doi.org/10.1128/AEM.00335-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654. https://doi.org/10.1111/j.1462-2920.2011.02480.x

    Article  PubMed  Google Scholar 

  69. Poomthongdee N, Duangmal K, Pathom-aree W (2015) Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. J Antibiot 68:106–114. https://doi.org/10.1038/ja.2014.117

    Article  CAS  Google Scholar 

  70. Muramatsu H, Murakami R, Ibrahim ZH, Murakami K, Shahab N, Nagai K (2011) Phylogenetic diversity of acidophilic actinomycetes from Malaysia. J Antibiot 64:621–624. https://doi.org/10.1038/ja.2011.57

    Article  CAS  Google Scholar 

  71. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’technologies. Trends Microbiol 18:374–381. https://doi.org/10.1016/j.tim.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  72. Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct Antarct Alp Res 42:396–405. https://doi.org/10.1657/1938-4246-42.4.396

    Article  Google Scholar 

  73. Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176:426–431. https://doi.org/10.1128/jb.176.2.426-431.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chandra G, Chater KF, Bornemann S (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157:1565–1572. https://doi.org/10.1099/mic.0.044263-0

    Article  CAS  PubMed  Google Scholar 

  75. Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445. https://doi.org/10.1111/j.1462-2920.2009.01974.x

    Article  CAS  PubMed  Google Scholar 

  76. Smart SM, Fawcett SE, Thomalla SJ, Weigand MA, Reason CJ, Sigman DM (2015) Isotopic evidence for nitrification in the Antarctic winter mixed layer. Global Biogeochem Cycles 29:427–445. https://doi.org/10.1002/2014GB005013

    Article  CAS  Google Scholar 

  77. Tolar BB, Ross MJ, Wallsgrove NJ, Liu Q, Aluwihare LI, Popp BN, Hollibaugh JT (2016) Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. ISME J 10:2605–2619. https://doi.org/10.1038/ismej.2016.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sahrawat K (2008) Factors affecting nitrification in soils. Commun Soil Sci Plant Anal 39:1436–1446. https://doi.org/10.1080/00103620802004235

    Article  CAS  Google Scholar 

  79. Ehhalt D, Rohrer F (2009) The tropospheric cycle of H2: a critical review. Tellus B: Chemical and Physical Meteorology 61:500–535. https://doi.org/10.1111/j.1600-0889.2009.00416.x

    Article  CAS  Google Scholar 

  80. de Castro A, Lopes A, Gomes de Sousa DM, Chaer GM, dos Reis B, Junior F, Goedert WJ, de Carvalho MI (2013) Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Sci Soc Am J 77:461–472. https://doi.org/10.2136/sssaj2012.0191

    Article  CAS  Google Scholar 

  81. Hotaling S, Hood E, Hamilton TL (2017) Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ Microbiol 19:2935–2948. https://doi.org/10.1111/1462-2920.13766

    Article  PubMed  Google Scholar 

  82. Rime T, Hartmann M, Frey B (2016) Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J 10:1625–1641. https://doi.org/10.1038/ismej.2015.238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hamilton TL, Peters JW, Skidmore ML, Boyd ES (2013) Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J 7:1402–1412. https://doi.org/10.1038/ismej.2013.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang Z, Zhang Y, Lv Y, Yan W, Xiao X, Sun B, Ma H (2019) H2 metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica. J Microbiol 57:1095–1104. https://doi.org/10.1007/s12275-019-9366-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 41676177, 41921006, 41676175, 41676188 and 41276202), Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (grant no. SL2020MS022), Shanghai Pilot Program for Basic Research of Shanghai Jiao Tong University (grant no. 21TQ1400201), and Shanghai Frontiers Science Center of Polar Science.

Author information

Authors and Affiliations

Authors

Contributions

C.T. and Y.Z. conceived and designed the study; Y.Z., R.Z., Z.Z., H.M., and Z.Y. collected the samples; Y.Z., R.Z., Z.Z., Z.Y., and C.T. performed the experiments; C.T., Y.L., R.Z., Z.Z., J.L., and Y.Z. contributed to data analyses; C.T., Y.L., and Y.Z. wrote the manuscript; all authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Ethics Approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

This manuscript does not contain any studies with human participants.

Consent for Publication

This manuscript does not contain any studies with human participants.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Lv, Y., Yang, Z. et al. Microbial Community Structure and Metabolic Potential at the Initial Stage of Soil Development of the Glacial Forefields in Svalbard. Microb Ecol 86, 933–946 (2023). https://doi.org/10.1007/s00248-022-02116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02116-3

Keywords

Navigation