Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microbial ecology of the cryosphere: sea ice and glacial habitats

Key Points

  • Active, diverse microorganisms have been detected in all cryospheric habitats on Earth, and they are as abundant as those living in freshwater habitats.

  • Numerous intracellular and extracellular adaptations enable microorganisms to thrive at temperatures below 0 °C, and thus to survive and grow in liquid inclusions within porous ice matrices.

  • The many different types of cryospheric habitats pose distinct habitability challenges to resident microorganisms. Communities specialized to each type of ice environment use different strategies to fulfil their energy and growth requirements, using either sunlight, or inorganic or organic compounds as energy sources.

  • Today, the use of next-generation sequencing approaches enables more detailed insights into microbial community composition and function, and allows the tracking of structural and functional differences and changes at a high resolution.

  • Climate change is altering the cryosphere; it is expected that this will lead to shifts in the distribution, composition and activity of cold-adapted microorganisms.

Abstract

The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cryosphere's frozen water realms.
Figure 2: Biogeochemical processes in frozen water ecosystems.
Figure 3: Bacterial composition of the cryosphere.

References

  1. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nov. 14, 129–155 (2002).

    Article  CAS  Google Scholar 

  2. Fountain, A. G. et al. The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Bioscience 62, 405–415 (2012).

    Article  Google Scholar 

  3. Anesio, A. M. & Bellas, C. M. Are low temperature habitats hot spots of microbial evolution driven by viruses? Trends Microbiol. 19, 52–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Feller, G. & Gerday, C. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1, 200–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Krembs, C., Eicken, H. & Deming, J. W. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc. Natl Acad. Sci. USA 108, 3653–3658 (2011). Quantitative image and chemical analyses of natural and laboratory-grown sea ice shows that EPS produced by diatoms alters the physical complexity of ice pores, increasing the habitable liquid-filled space within the ice and the potential for primary productivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stibal, M., Hasan, F., Wadham, J. L., Sharp, M. J. & Anesio, A. M. Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates. Extremophiles 16, 255–265 (2012).

    Article  PubMed  Google Scholar 

  7. Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R. & Sattler, B. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Chang. Biol. 15, 955–960 (2009).

    Article  Google Scholar 

  8. Irvine-Fynn, T. D. L. et al. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environ. Microbiol. 14, 2998–3012 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Assmy, P. et al. Floating ice-algal aggregates below melting Arctic sea ice. PLoS ONE 8, e76599 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glud, R. N., Rysgaard, S., Turner, G., McGinnis, D. F. & Leakey, R. J. G. Biological- and physical-induced oxygen dynamics in melting sea ice of the Fram Strait. Limnol. Oceanogr. 59, 1097–1111 (2014).

    Article  CAS  Google Scholar 

  11. Fernández-Méndez, M. et al. Composition, buoyancy regulation and fate of ice algal aggregates in the central Arctic Ocean. PLoS ONE 9, e107452 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jansson, J. K. & Tas¸, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Priscu, J. C. & Christner, B. C. in Microbial Diversity and Bioprospecting (ed. Bull, A.) 130–145 (ASM Press, 2004). This chapter discusses the microbial ecology of icy habitats and contends that microorganisms in frozen environments are numerous and are an unaccounted contribution to global carbon budgets.

    Book  Google Scholar 

  14. Møller, A. K., Søborg, D. A., Al-Soud, W. A., Sørensen, S. J. & Kroer, N. Bacterial community structure in high-arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation. Polar Res. 32, 17390 (2013).

    Article  Google Scholar 

  15. Larose, C., Dommergue, A. & Vogel, T. M. Microbial nitrogen cycling in Arctic snowpacks. Environ. Res. Lett. 8, 035004 (2013).

    Article  CAS  Google Scholar 

  16. Hauptmann, A. L. et al. Bacterial diversity in snow on North Pole ice floes. Extremophiles 18, 945–951 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maccario, L., Vogel, T. M. & Larose, C. Potential drivers of microbial community structure and function in Arctic spring snow. Front. Microbiol. 5, 413 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Musilova, M., Tranter, M., Bennett, S. A., Wadham, J. & Anesio, A. M. Stable microbial community composition on the Greenland Ice Sheet. Front. Microbiol. 6, 193 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Foreman, C. M., Sattler, B., Mikucki, J. A., Porazinska, D. L. & Priscu, J. C. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J. Geophys. Res. 112, G04S32 (2007).

    Article  CAS  Google Scholar 

  20. Fountain, A. G., Nylen, T. H., Tranter, M. & Bagshaw, E. Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. J. Geophys. Res. 113, G01S92 (2008).

    Google Scholar 

  21. Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Article  Google Scholar 

  22. Anesio, A. M. & Laybourn-Parry, J. Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27, 219–225 (2012). This review provides an introduction to glaciated environments that serve as microbial habitats.

    Article  PubMed  Google Scholar 

  23. Christner, B. C. et al. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51, 2485–2501 (2006).

    Article  Google Scholar 

  24. Loveland-Curtze, J., Miteva, V. & Brenchley, J. Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 14, 61–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Miteva, V., Teacher, C., Sowers, T. & Brenchley, J. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11, 640–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Raiswell, R. Chemical models of solute acquisition in glacial melt waters. J. Glaciol. 30, 49–57 (1984).

    Article  CAS  Google Scholar 

  27. Skidmore, M. L., Foght, J. M. & Sharp, M. J. Microbial life beneath a High Arctic glacier. Appl. Environ. Microbiol. 66, 3214–3220 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharp, M. et al. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27, 107–110 (1999).

    Article  CAS  Google Scholar 

  29. Fountain, A. G. & Walder, J. S. Water flow through temperate glaciers. Rev. Geophys. 36, 299 (1998).

    Article  Google Scholar 

  30. Knight, P. G. Glaciers (Routledge, 1999).

    Google Scholar 

  31. Lanoil, B. et al. Bacteria beneath the West Antarctic ice sheet. Environ. Microbiol. 11, 609–615 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Laybourn-Parry, J., Tranter, M. & Hodson, A. J. The Ecology of Snow and Ice Environments (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  33. Deming, J. W. & Eicken, H. in Planets and Life: The Emerging Science of Astrobiology (eds Sullivan, W. T. & Baross, J. A.) 292–312 (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  34. Arrigo, K. R. Sea ice ecosystems. Ann. Rev. Mar. Sci. 6, 439–467 (2014).

    Article  PubMed  Google Scholar 

  35. Wells, L. E. & Deming, J. W. Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ. Microbiol. 8, 1115–1121 (2006).

    Article  PubMed  Google Scholar 

  36. Garrison, D. L., Ackley, S. F. & Buck, K. R. A physical mechanism for establishing algal populations in frazil ice. Nature 306, 363–365 (1983).

    Article  CAS  Google Scholar 

  37. Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Aumack, C. F., Juhl, A. R. & Krembs, C. Diatom vertical migration within land-fast Arctic sea ice. J. Mar. Syst. 139, 496–504 (2014).

    Article  Google Scholar 

  39. Junge, K., Eicken, H. & Deming, J. W. Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl. Environ. Microbiol. 69, 4282–4284 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bowman, J. S. & Deming, J. W. Elevated bacterial abundance and exopolymers in saline frost flowers and implications for atmospheric chemistry and microbial dispersal. Geophys. Res. Lett. 37, L13501 (2010).

    Article  CAS  Google Scholar 

  41. Barber, D. G. et al. Frost flowers on young Arctic sea ice: the climatic, chemical, and microbial significance of an emerging ice type. J. Geophys. Res. Atmos. 119, 593–612 (2014).

    Article  CAS  Google Scholar 

  42. Brinkmeyer, R., Glöckner, F.-O., Helmke, E. & Amann, R. Predominance of ß-proteobacteria in summer melt pools on Arctic pack ice. Limnol. Oceanogr. 49, 1013–1021 (2004).

    Article  Google Scholar 

  43. Collins, R. E., Carpenter, S. D. & Deming, J. W. Spatial heterogeneity and temporal dynamics of particles, bacteria, and pEPS in Arctic winter sea ice. J. Mar. Syst. 74, 902–917 (2008).

    Article  Google Scholar 

  44. Ewert, M. & Deming, J. W. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice. FEMS Microbiol. Ecol. 89, 476–489 (2014). This study of two Arctic bacterial isolates subjected to fluctuating and extreme freezing conditions, as encountered in Arctic sea ice during winter, revealed different survival strategies: use of osmoprotectant compounds to reduce cell losses; and an increase in population size via cell miniaturization and fragmentation, which enhances cell dispersal.

    Article  CAS  PubMed  Google Scholar 

  45. Junge, K., Eicken, H. & Deming, J. W. Bacterial activity at −2 to −20 degrees C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70, 550–557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gradinger, R. R. Adaptation of Arctic and Antarctic ice metazoa to their habitat. Zoology 104, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Thomas, D. N. & Dieckmann, G. S. Antarctic sea ice — a habitat for extremophiles. Science 295, 641–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Underwood, G. J. C. et al. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice. Proc. Natl Acad. Sci. USA 110, 15734–15739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Arrigo, K. R. Primary production in Antarctic sea ice. Science 276, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A. & Booth, B. C. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 44, 1623–1644 (1997).

    Article  CAS  Google Scholar 

  52. Grossmann, S. & Dieckmann, G. S. Bacterial standing stock, activity, and carbon production during formation and growth of sea ice in the Weddell Sea, Antarctica. Appl. Environ. Microbiol. 60, 2746–2753 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Helmke, E. & Weyland, H. Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 117, 269–288 (1995).

    Article  Google Scholar 

  54. Koh, E. Y., Martin, A. R., McMinn, A. & Ryan, K. G. Recent advances and future perspectives in microbial phototrophy in Antarctic sea ice. Biol. (Basel). 1, 542–556 (2012).

    Google Scholar 

  55. Petri, R. & Imhoff, J. F. Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol. 24, 252–257 (2014).

    Article  Google Scholar 

  56. Collins, R. E., Rocap, G. & Deming, J. W. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ. Microbiol. 12, 1828–1841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cowie, R. O. M., Maas, E. W. & Ryan, K. G. Archaeal diversity revealed in Antarctic sea ice. Antarct. Sci. 23, 531–536 (2011).

    Article  Google Scholar 

  58. Bowman, J. S. et al. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME J. 6, 11–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Brinkmeyer, R. et al. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69, 6610–6619 (2003). This study provides a thorough comparison of the composition of bacterial communities in sea ice at both poles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cowie, R., Williams, G., Maas, E. & Voyles, K. Antarctic sea-ice microbial communities show distinct patterns of zonation in response to algal-derived substrates. Aquat. Microb. Ecol. 73, 123–134 (2014).

    Article  Google Scholar 

  61. Han, D. et al. Bacterial communities of surface mixed layer in the pacific sector of the western Arctic Ocean during sea-ice melting. PLoS ONE 9, e86887 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Aslam, S. N., Cresswell-Maynard, T., Thomas, D. N. & Underwood, G. J. C. Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. J. Phycol. 48, 1494–1509 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Staley, J. T. & Gosink, J. J. Poles apart: biodiversity and biogeography of sea ice bacteria. 53, 189–215 (1999).

  64. Bowman, J. P. et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:ω63). Int. J. Syst. Bacteriol. 48, 1171–1180 (1998).

    Article  CAS  Google Scholar 

  65. Murray, A. E. & Grzymski, J. J. Diversity and genomics of Antarctic marine micro-organisms. Phil. Trans. R. Soc. 362, 2259–2271 (2007).

    Article  CAS  Google Scholar 

  66. Borriss, M., Helmke, E., Hanschke, R. & Schweder, T. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles 7, 377–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Brown, M. V. & Bowman, J. P. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35, 267–275 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Comeau, A. M. et al. Protists in Arctic drift and land-fast sea ice. J. Phycol. 49, 229–240 (2013).

    Article  PubMed  Google Scholar 

  69. Hatam, I. et al. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice. FEMS Microbiol. Ecol. 90, 115–125 (2014). This is a comparative investigation of the bacterial community composition of distinct multi-year ice layers and surface seawater indicates that sea ice communities are structured more by conditions at the time of ice formation than by in situ physicochemical parameters.

    Article  CAS  PubMed  Google Scholar 

  70. Eronen-Rasimus, E. et al. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment. Microbiologyopen 3, 139–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Methé, B. A. et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl Acad. Sci. USA 102, 10913–10918 (2005). This paper provides comprehensive background information on cold adaptation in general and detailed insights into the numerous specific adaptations of the marine psychrophilic bacterium C. psychrerythraea 34H.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Douglas, T. A. et al. Elevated mercury measured in snow and frost flowers near Arctic sea ice leads. Geophys. Res. Lett. 32, 1–4 (2005).

    Google Scholar 

  73. Bowman, J. S., Larose, C., Vogel, T. M. & Deming, J. W. Selective occurrence of Rhizobiales in frost flowers on the surface of young sea ice near Barrow, Alaska and distribution in the polar marine rare biosphere. Environ. Microbiol. Rep. 5, 575–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Bowman, J. S., Berthiaume, C. T., Armbrust, E. V. & Deming, J. W. The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis. FEMS Microbiol. Ecol. 89, 376–387 (2014). In this first metagenomic analysis of a sea ice habitat, focused on the surface of young sea ice exposed to a very cold atmosphere, genes unique to survival and activity at the ice–atmosphere interface were detected.

    Article  CAS  PubMed  Google Scholar 

  75. Ewert, M., Carpenter, S. D., Colangelo-Lillis, J. & Deming, J. W. Bacterial and extracellular polysaccharide content of brine-wetted snow over Arctic winter first-year sea ice. J. Geophys. Res. Ocean. 118, 726–735 (2013).

    Article  CAS  Google Scholar 

  76. Telling, J. et al. Nitrogen fixation on Arctic glaciers, Svalbard. J. Geophys. Res. 116, G03039 (2011).

    Article  Google Scholar 

  77. Yallop, M. L. et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6, 2302–2313 (2012). This study provides evidence for how the development of pigmentation in eukaryotic algae during the melting season promotes darkening of large areas of the Greenland Ice Sheet and thus influences its reflective properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lutz, S., Anesio, A. M., Jorge-Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 (2012). This work provides insights into how organic carbon accumulates at the surface of glaciers and is subsequently modified and transported, with particular attention to CO 2 cycling.

    Article  CAS  Google Scholar 

  80. Hoham, R. W. & Duval, B. in Snow Ecology (eds Jones, H. et al.) 168–228 (Cambridge Univ. Press, 2001).

    Google Scholar 

  81. Takeuchi, N. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environ. Res. Lett. 8, 035002 (2013).

    Article  Google Scholar 

  82. Stibal, M., Šabacká, M. & Kaštovská, K. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb. Ecol. 52, 644–654 (2006).

    Article  PubMed  Google Scholar 

  83. Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4, 191–202 (2010). Using targeted sequencing of 16S rRNA of cyanobacteria, this study demonstrates a global distribution of low-temperature cyanobacterial ecotypes throughout the cold terrestrial biosphere.

    Article  CAS  PubMed  Google Scholar 

  84. Edwards, A. et al. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ. Res. Lett. 8, 035003 (2013).

    Article  Google Scholar 

  85. Singh, P., Singh, S. M. & Dhakephalkar, P. Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 18, 229–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Hood, E. et al. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Pautler, B. G., Dubnick, A., Sharp, M. J., Simpson, A. J. & Simpson, M. J. Comparison of cryoconite organic matter composition from Arctic and Antarctic glaciers at the molecular-level. Geochim. Cosmochim. Acta 104, 1–18 (2013).

    Article  CAS  Google Scholar 

  88. Bhatia, M. P. et al. Organic carbon export from the Greenland ice sheet. Geochim. Cosmochim. Acta 109, 329–344 (2013). This study shows that glacial runoff from the Greenland Ice Sheet is responsible for the delivery of large amounts of labile and microbially produced dissolved organic carbon to coastal waters.

    Article  CAS  Google Scholar 

  89. Priscu, J. C. et al. in Polar Lakes and Rivers (eds Vincent, W. F. & Laybourn-Parry, J.) 119–136 (Oxford Univ. Press, 2008).

    Book  Google Scholar 

  90. Shtarkman, Y. M. et al. Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS ONE 8, e67221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014). This unprecedented study presents initial microbiological findings from water and sediment samples collected from an Antarctic subglacial lake.

    Article  CAS  PubMed  Google Scholar 

  92. Christner, B. C., Skidmore, M. L., Priscu, J. C., Tranter, M. & Foreman, C. M. in Psychrophiles: from Biodiversity to Biotechnology (eds Margesin, R. et al.) 51–71 (Springer, 2008).

    Book  Google Scholar 

  93. Skidmore, M. in Antarctic Subglacial Environments, Geophysical Monograph Series (eds Siegert, M. J. & Kennicutt, M. C.) 61–81 (Wiley, 2011).

    Book  Google Scholar 

  94. Hamilton, T. L., Peters, J. W., Skidmore, M. L. & Boyd, E. S. Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J. 7, 1402–1412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mikucki, J. A. & Priscu, J. C. Bacterial diversity associated with blood falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl. Environ. Microbiol. 73, 4029–4039 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gaidos, E. et al. A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4, 327–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Mikucki, J. A. et al. A contemporary microbially maintained subglacial ferrous 'ocean'. Science 324, 397–400 (2009). This work provides important insight into the biogeochemistry of anoxic subglacial brine and microbial diversity in subglacial habitats and their role in global iron fluxes.

    Article  CAS  PubMed  Google Scholar 

  98. Skidmore, M., Anderson, S. P., Sharp, M., Foght, J. & Lanoil, B. D. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microbiol. 71, 6986–6997 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tranter, M., Skidmore, M. & Wadham, J. Hydrological controls on microbial communities in subglacial environments. Hydrol. Process. 19, 995–998 (2005).

    Article  Google Scholar 

  100. Boyd, E. S. et al. Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl. Environ. Microbiol. 77, 4778–4787 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wadham, J. L., Bottrell, S., Tranter, M. & Raiswell, R. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal High Arctic glacier. Earth Planet. Sci. Lett. 219, 341–355 (2004).

    Article  CAS  Google Scholar 

  102. Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Dieser, M. et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 8, 2305–2316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wadham, J. L., Tranter, M., Tulaczyk, S. & Sharp, M. Subglacial methanogenesis: a potential climatic amplifier? Global Biogeochem. Cycles 22, GB2021 (2008).

    Article  CAS  Google Scholar 

  105. Wadham, J. L. et al. Potential methane reservoirs beneath Antarctica. Nature 488, 633–637 (2012). Experimental evidence and modelling in this study show the potential for the existence of microbial methane production in glacially covered organic matter.

    Article  CAS  PubMed  Google Scholar 

  106. Lyons, W. B. et al. Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event. Ann. Glaciol. 40, 200–206 (2005).

    Article  CAS  Google Scholar 

  107. Marteinsson, V. T. et al. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J. 7, 427–437 (2013).

    Article  PubMed  CAS  Google Scholar 

  108. Boyd, E. S., Hamilton, T. L., Havig, J. R., Skidmore, M. L. & Shock, E. L. Chemolithotrophic primary production in a subglacial ecosystem. Appl. Environ. Microbiol. 80, 6146–6153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mikucki, J. A. et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat. Commun. 6, 6831 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Hawkings, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Alderkamp, A. C. et al. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): phytoplankton characteristics and productivity. Deep. Res. Part II Top. Stud. Oceanogr. 71–76, 32–48 (2012).

    Article  CAS  Google Scholar 

  112. Wadham, J. L. et al. The potential role of the Antarctic ice sheet in global biogeochemical cycles. Earth Environ. Sci. Trans. R. Soc. Edinburgh 104, 55–67 (2013).

    Article  CAS  Google Scholar 

  113. Colangelo-Lillis, J. R. & Deming, J. W. Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage–host interactions. Extremophiles 17, 99–114 (2013). This comparative genomic and proteomic analysis of a bacterial virus–host system holding the lower temperature record for viral production (−12 °C) revealed that the only viral cold-active proteins are enzymes involved in cell entry and lysis, disruption of host transcription and protection of the viral genome, which are all essential viral processes. Evidence for lateral gene transfer was also obtained.

    Article  CAS  PubMed  Google Scholar 

  114. Wells, L. E. & Deming, J. W. Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat. Microb. Ecol. 45, 15–19 (2006).

    Article  Google Scholar 

  115. Collins, R. E. & Deming, J. W. An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Extremophiles 17, 601–610 (2013). In this genomic study, lateral gene transfer was linked to the organism's ability to use compatible solutes in respiration, after their osmoprotective function was no longer needed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Feng, S., Powell, S. M., Wilson, R. & Bowman, J. P. Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biol. Evol. 6, 133–148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Huston, A. L., Methe, B. & Deming, J. W. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70, 3321–3328 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Marx, J. G., Carpenter, S. D. & Deming, J. W. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 55, 63–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Carillo, S. et al. A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins. J. Am. Chem. Soc. 137, 179–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Hanada, Y., Nishimiya, Y., Miura, A., Tsuda, S. & Kondo, H. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J. 281, 3576–3590 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Vance, T. D. R. et al. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice. Biosci. Rep. 34, e00121 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Simon, C., Wiezer, A., Strittmatter, A. W. & Daniel, R. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl. Environ. Microbiol. 75, 7519–7526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Purcell, A. M. et al. Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front. Microbiol. 5, 594 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Deming, J. W. in Sea Ice — An Introduction to its Physics, Chemistry, Biology and Geology (eds Thomas, D. N. & Dieckmann, G. S.) 247–282 (Blackwell Science Ltd, 2010).

    Google Scholar 

  125. Dolhi, J. M., Maxwell, D. P. & Morgan-Kiss, R. M. Review: the Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis. Extremophiles 17, 711–722 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  Google Scholar 

  127. Wientjes, I. G. M., Van De Wal, R. S. W., Reichart, G. J., Sluijs, A. & Oerlemans, J. Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere 5, 589–601 (2011).

    Article  Google Scholar 

  128. Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4, 519–523 (2011).

    Article  CAS  Google Scholar 

  129. Deming, J. W. in Encyclopedia of Microbiology (ed. Schaechter, M.) 147–158 (Elsevier, 2009).

    Book  Google Scholar 

  130. Raymond, J. A., Fritsen, C. & Shen, K. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol. Ecol. 61, 214–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Bayer-Giraldi, M., Weikusat, I., Besir, H. & Dieckmann, G. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63, 210–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Krembs, C., Eicken, H., Junge, K. & Deming, J. W. High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep. Res. Part I Oceanogr. Res. Pap. 49, 2163–2181 (2002).

    Article  CAS  Google Scholar 

  133. Meiners, K., Krembs, C. & Gradinger, R. Exopolymer particles: microbial hotspots of enhanced bacterial activity in Arctic fast ice (Chukchi Sea). Aquat. Microb. Ecol. 52, 195–207 (2008).

    Article  Google Scholar 

  134. Aslam, S. N. et al. Dissolved extracellular polymeric substances (dEPS) dynamics and bacterial growth during sea ice formation in an ice tank study. Polar Biol. 35, 661–676 (2012).

    Article  Google Scholar 

  135. Ewert, M. & Deming, J. W. Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Ann. Glaciol. 52, 111–117 (2011).

    Article  CAS  Google Scholar 

  136. Christner, B. C., Morris, C. E., Foreman, C. M., Cai, R. & Sands, D. C. Ubiquity of biological ice nucleators in snowfall. Science 319, 1214 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Boras, J. A. et al. Effect of ice melting on bacterial carbon fluxes channelled by viruses and protists in the Arctic Ocean. Polar Biol. 33, 1695–1707 (2010).

    Article  Google Scholar 

  138. Anesio, A. M., Mindl, B., Laybourn-Parry, J., Hodson, A. J. & Sattler, B. Viral dynamics in cryoconite holes on a High Arctic glacier (Svalbard). J. Geophys. Res. 112, G04S31 (2007).

    Article  Google Scholar 

  139. Bellas, C. M. et al. Viral impacts on bacterial communities in Arctic cryoconite. Environ. Res. Lett. 8, 045021 (2013).

    Article  Google Scholar 

  140. Paterson, H. & Laybourn-Parry, J. Antarctic sea ice viral dynamics over an annual cycle. Polar Biol. 35, 491–497 (2012).

    Article  Google Scholar 

  141. Collins, R. E. & Deming, J. W. Abundant dissolved genetic material in Arctic sea ice part II: viral dynamics during autumn freeze-up. Polar Biol. 34, 1831–1841 (2011).

    Article  Google Scholar 

  142. López-Bueno, A. et al. High diversity of the viral community from an Antarctic lake. Science 326, 858–861 (2009).

    Article  PubMed  CAS  Google Scholar 

  143. Bellas, C. M., Anesio, A. M. & Barker, G. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions. Front. Microbiol. 6, 656 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. DeMaere, M. Z. et al. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc. Natl Acad. Sci. USA 110, 16939–16944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Doran, P. T. & Vincent, W. F. in Antarctic Subglacial Aquatic Environments (eds Siegert, M. J. & Kennicutt, M. C.) 149–157 (American Geophysical Union, 2011). These authors present recommendations to maintain environmental stewardship when accessing pristine Antarctica subglacial aquatic environments.

    Book  Google Scholar 

  146. Doran, P. T. et al. Entry approach into pristine ice-sealed lakes — Lake Vida, East Antarctica, a model ecosystem. Limnol. Oceanogr. Methods 6, 542–547 (2008).

    Article  CAS  Google Scholar 

  147. Priscu, J. C. et al. A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarct. Sci. 25, 637–647 (2013).

    Article  Google Scholar 

  148. Dachwald, B. et al. IceMole: a maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems. Ann. Glaciol. 55, 14–22 (2014).

    Article  Google Scholar 

  149. Hell, K. et al. The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME J. 7, 1814–1826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Michaud, L. et al. Snow surface microbiome on the High Antarctic Plateau (DOME C). PLoS ONE 9, e104505 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Edwards, A. et al. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol. Ecol. 89, 222–237 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Cowie, R. O. M. Bacterial community structure, function and diversity in Antarctic sea ice. Victoria University of Wellington [online], (2011).

  153. Rapp, J. Z. Bacterial diversity in sea ice, melt ponds, water column, ice algal aggregates and deep-sea sediments of the Central Arctic Ocean. AWI [online], (2014).

  154. Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Kirchman, D. L., Cottrell, M. T. & Lovejoy, C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol. 12, 1132–1143 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Wright, A. & Siegert, M. J. The identification and physiographical setting of Antarctic subglacial lakes: an update based on recent discoveries. Geophys. Monogr. Ser. 192, 9–26 (2011).

    Google Scholar 

Download references

Acknowledgements

Support was received from the European Research Council (ERC) Adv G (grant 294757 to A.B.), the Natural Environment Research Council (NERC; grant NE/J02399X/1 to A.M.A.), and the National Science Foundation (NSF; grant ARC-1203267 to J.W.D. and grant ANT-1144178 to J.A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Boetius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Psychrophilic

Organisms that thrive at low temperatures. From the Greek words psychrós (ψυχρός) meaning cold, and phílos (φίλος) meaning loving.

Extracellular polymeric substances

(EPS). High-molecular-weight, carbohydrate-rich exudates that are released by microorganisms in response to a shift in environmental conditions, including temperature, salinity and nutrient availability. EPS are composed primarily of polysaccharides but can also include proteins, DNA or lipopolysaccharides.

Aquifer

A body of permeable rock that can contain or transmit groundwater.

Albedo

A measure of how much solar energy a surface reflects, whereby light-coloured surfaces such as sea ice reflect more solar energy than dark surfaces such as open water. Dust particles and pigmentation by algal growth on the surface of ice lower albedo by decreasing ice reflectivity.

Cryoconite holes

Small holes (submetre scale) in the ablation zone on glacial ice surfaces. They form as a result of the deposition of cryoconite (a mixture of dark-coloured inorganic and organic particles, including microorganisms), which absorbs solar radiation and causes the ice to melt.

Ablation zones

Areas of a glacier or ice sheet where ice loss (caused by melting, sublimation, evaporation or ice calving) exceeds ice gain (due to snow accumulation).

Accretion ice

Ice that forms when liquid water freezes to the base of a glacier or ice sheet. An example is lake water from Lake Vostok, which has frozen to the base of the ice sheet, forming a layer of accretion ice.

Basal sediments

The loose debris that is produced by glacial erosion of the underlying material at the icebedrock interface of a glacier or ice sheet.

Brine

Salt-rich liquid trapped in channels and pockets within the ice matrix. In very cold sea ice, some sea salts approach saturating levels and precipitate.

Algal mats

A dense accumulation of phototrophic eukaryotic microorganisms, which grow, for example, on the underside of sea ice.

Foraminifera

A group of single-celled eukaryotes with a characteristic calcium carbonate shell and either a planktonic or benthic lifestyle. The remains of their calcareous fossils in seafloor sediments have important roles in paleoclimatology and paleooceanography.

Sympagic meiofauna

Small animals of <1mm in size that inhabit sea ice.

Diatoms

Unicellular algae, with silicate walls, that constitute the major fraction of phytoplankton in most coastal and polar oceans; they are also the dominant primary producers in sea ice.

Grazing pressure

Stress on a population of organisms due to grazing or consumption by other, typically larger organisms.

Proteorhodopsin

A photoactive protein that functions as a light-driven proton pump and is used by some marine microorganisms to generate additional energy.

Polyunsaturated fatty acids

(PUFAs). Lipids that contain carbon backbones with two or more carboncarbon double bonds. They are unsaturated with respect to the number of hydrogen atoms per carbon atom.

Seed communities

The source of organisms to a transient ecosystem.

Glacial runoff

The meltwater draining from glaciers and ice sheets that may come from both surface (supraglacial) and subsurface (subglacial) melt.

Glacier forefields

The terrain most recently exposed by a retreating glacier. This region lies between the current terminus or leading edge of a glacier and the accumulation of glacial debris that marks the previous (greater) extent of the glacier.

Bedrock

The deeper layer of consolidated rock that underlies loose materials, such as soil, gravel and sediment.

Chemolithoautotrophs

Organisms that gain their energy through the oxidation of reduced inorganic compounds and use CO2 as the sole carbon source for growth. The term is often used synonymously with chemoautotrophy and chemosynthesis.

Heterotrophs

Organisms that use organic compounds as their carbon source and obtain energy through the oxidation of these compounds.

Redox chemistry

Pairs of reactions in which one compound becomes oxidized and releases electrons, and the other compound becomes reduced and accepts the released electrons.

Remotely operated vehicles

(ROVs). Tethered unmanned underwater robots often used for deep-water research or industrial purposes.

Methanogenesis

The biological production of methane (CH4) in an anaerobic process mediated exclusively by methanogenic archaea.

Phylotypes

Different taxonomic groups of microorganisms that can be determined by comparative analyses of their 16S rRNA gene sequences.

Calvin cycle

A series of biochemical reactions used by many photosynthetic organisms to convert CO2 into organic compounds.

Isotopic signature

The ratio of isotopes of a particular element in a molecule of interest, as measured by isotope ratio mass spectrometry.

Ice-binding proteins

Proteins used by microorganisms to prevent or limit the growth of ice structures within or outside of their body fluids, by, for example, adhering to the ice or otherwise inhibiting ice crystal growth or recrystallization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boetius, A., Anesio, A., Deming, J. et al. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13, 677–690 (2015). https://doi.org/10.1038/nrmicro3522

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3522

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing