Skip to main content
Log in

Intestinal Microbial Community Dynamics of White-Tailed Deer (Odocoileus virginianus) in an Agroecosystem

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The intestinal microbiota has important functions that contribute to host health. The compositional dynamics of microbial communities are affected by many factors, including diet and presence of pathogens. In contrast to humans and domestic mammals, the composition and seasonal dynamics of intestinal microbiota of wildlife species remain comparatively understudied. White-tailed deer (Odocoileus virginianus) is an ecologically and economically important wildlife species that inhabits agricultural ecosystems and is known to be a reservoir of enteric pathogens. Nevertheless, there is a lack of knowledge of white-tailed deer intestinal microbiota diversity and taxonomic composition. This study’s first objective was to characterize and compare the intestinal microbiota of 66 fecal samples from white-tailed deer collected during two sampling periods (March and June) using 16S rDNA pyrosequencing. Associations between community diversity and composition and factors including season, sex, host genetic relatedness, and spatial location were quantified. Results revealed that white-tailed deer intestinal microbiota was predominantly comprised of phyla Firmicutes and Proteobacteria, whose relative frequencies varied significantly between sampling periods. The second objective was to examine the associations between the presence of Escherichia coli and Salmonella, and microbiota composition and diversity. Results indicated that relative abundance of some microbial taxa varied when a pathogen was present. This study provides insights into microbial compositional dynamics of a wildlife species inhabiting coupled natural and agricultural landscapes. Data focus attention on the high prevalence of Proteobacteria particularly during the summer and highlight the need for future research regarding the role of white-tailed deer as a natural pathogen reservoir in agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Borer ET, Kinkel LL, May G, Seabloom EW (2013) The world within: quantifying the determinants and outcomes of a host’s microbiome. Basic Appl Ecol 14:533–539. doi:10.1016/j.baae.2013.08.009

    Article  Google Scholar 

  2. Shafquat A, Joice R, Simmons SL, Huttenhower C (2014) Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 22:261–266. doi:10.1016/j.tim.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. El Aidy S, Van Den Abbeele P, Van De Wiele T, et al (2013) Intestinal colonization: how key microbial players become established in this dynamic process: microbial metabolic activities and the interplay between the host and microbes prospects & overviews. S E. Aidy et al. BioEssays 35:913–923. doi:10.1002/bies.201300073

    CAS  Google Scholar 

  4. Leser TD, Mølbak L (2009) Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ. Microbiol. 11:2194–2206. doi:10.1111/j.1462-2920.2009.01941.x

    Article  CAS  PubMed  Google Scholar 

  5. Gu S, Chen D, Zhang J-N, et al (2013) Bacterial community mapping of the mouse gastrointestinal tract. PLoS One 8:e74957. doi:10.1371/journal.pone.0074957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Durso LM, Harhay GP, Smith TPL, et al (2010) Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl. Environ. Microbiol. 76:4858–4862. doi:10.1128/AEM.00207-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh P, Teal TK, Marsh TL, et al (2015a) Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome 3:45. doi:10.1186/s40168-015-0109-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh P, Sha Q, Lacher DW, et al (2015b) Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem. Front. Cell. Infect. Microbiol. doi:10.3389/fcimb.2015.00029

    Google Scholar 

  9. Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr. Opin. Biotechnol. 13:213–217. doi:10.1016/S0958-1669(02)00314-2

    Article  PubMed  Google Scholar 

  10. Carroll IM, Ringel-Kulka T, Siddle JP, et al (2012) Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One 7:1–7. doi:10.1371/journal.pone.0046953

    Google Scholar 

  11. Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350(80):663–666. doi:10.1126/science.aad2602

    Article  CAS  PubMed  Google Scholar 

  12. Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14:685–690. doi:10.1038/ni.2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao L, Tyler J, Starnes J, et al (2013) Correlation analysis of Shiga toxin-producing Escherichia coli shedding and faecal bacterial composition in beef cattle. J. Appl. Microbiol. 115:591–603

    Article  CAS  PubMed  Google Scholar 

  14. Nelson KE, Zinder SH, Hance I, et al (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ. Microbiol. 5:1212–1220. doi:10.1046/j.1462-2920.2003.00526.x

    Article  PubMed  Google Scholar 

  15. Dostaler S, Ouellet JP, Therrien JF, Côté SD (2011) Are feeding preferences of white-tailed deer related to plant constituents? J. Wildl. Manag. 75:913–918. doi:10.1002/jwmg.118

    Article  Google Scholar 

  16. Renter DG, Sargeant JM, Hygnstorm SE, et al (2001) Escherichia coli O157:H7 in free-ranging deer in Nebraska. J. Wildl. Dis. 37:755–760

    Article  CAS  PubMed  Google Scholar 

  17. Branham LA, Carr MA, Scott C, Callaway TR (2005) E. coli O157 and salmonella spp. in white-tailed deer and livestock. Curr Issues Intest Microbiol 6:25–29

    PubMed  Google Scholar 

  18. Renter DG, Gnad DP, Sargeant JM, Hygnstrom SE (2006) Prevalence and serovars of Salmonella in the feces of free-ranging white-tailed deer (Odocoileus virginianus) in Nebraska. J. Wildl. Dis. 42:699–703. doi:10.7589/0090-3558-42.3.699

    Article  PubMed  Google Scholar 

  19. Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 356:991–999. doi:10.1098/rstb.2001.0889

    Article  CAS  Google Scholar 

  20. Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457. doi:10.1007/BF00378733

    Article  CAS  PubMed  Google Scholar 

  21. Gruninger RJ, Sensen CW, TA MA, Forster RJ (2014) Diversity of rumen bacteria in Canadian cervids. PLoS One 9:1–9. doi:10.1371/journal.pone.0089682

    Google Scholar 

  22. Li Z, Zhang Z, Xu C, et al (2014) Bacteria and methanogens differ along the gastrointestinal tract of Chinese roe deer (Capreolus pygargus). PLoS One 9:e114513. doi:10.1371/journal.pone.0114513

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li ZP, Liu HL, Jin CA, et al (2013) Differences in the methanogen population exist in sika deer (Cervus nippon) fed different diets in China. Microb. Ecol. 66:879–888. doi:10.1007/s00248-013-0282-4

    Article  PubMed  Google Scholar 

  24. Sundset MA, Edwards JE, Cheng YF, et al (2009) Molecular diversity of the rumen microbiome of norwegian reindeer on natural summer pasture. Microb. Ecol. 57:335–348. doi:10.1007/s00248-008-9414-7

    Article  CAS  PubMed  Google Scholar 

  25. Dominianni C, Wu J, Hayes RB, Ahn J (2014) Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiol. 14:103. doi:10.1186/1471-2180-14-103

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bahl MI, Bergström A, Licht TR (2012) Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol. Lett. 329:193–197. doi:10.1111/j.1574-6968.2012.02523.x

    Article  CAS  PubMed  Google Scholar 

  27. Kirkpatrick BW (1992) Identification of a conserved microsatellite site in the porcine and bovine insulin-like growth factor-I gene 5′ flank. Anim. Genet. 23:543–548

    Article  CAS  PubMed  Google Scholar 

  28. Moore SS, Barendse W, Berger KT, et al (1992) Bovine and ovine DNA microsatellites from the EMBL and GENBANK databases. Anim. Genet. 23:463–467

    Article  CAS  PubMed  Google Scholar 

  29. De Woody JA, Honeycutt RL, Skow LC (1995) Microsatellite markers in white-tailed deer. J Hered 86:317–319

    Article  CAS  Google Scholar 

  30. Wilson GA, Strobeck C, Wu L, Coffin JW (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol. 6:697–699. doi:10.1046/j.1365-294X.1997.00237.x

    Article  CAS  PubMed  Google Scholar 

  31. Grear DA, Samuel MD, Scribner KT, et al (2010) Influence of genetic relatedness and spatial proximity on chronic wasting disease infection among female white-tailed deer. J. Appl. Ecol. 47:532–540. doi:10.1111/j.1365-2664.2010.01813.x

    Article  CAS  Google Scholar 

  32. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  33. Lindsay AR, Belant JL (2008) A simple and improved PCR-based technique for white-tailed deer (Odocoileus virginianus) sex identification. Conserv. Genet. 9:443–447. doi:10.1007/s10592-007-9326-y

    Article  CAS  Google Scholar 

  34. Trabulsi LR, Keller R, Gomes TAT (2002) Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 8:508–513. doi:10.3201/eid0805.010385

    Article  PubMed  PubMed Central  Google Scholar 

  35. Davies PR, Turkson PK, Funk JA, et al (2000) Comparison of methods for isolating Salmonella bacteria from faeces of naturally infected pigs. J. Appl. Microbiol. 89:169–177. doi:10.1046/j.1365-2672.2000.01101.x

    Article  CAS  PubMed  Google Scholar 

  36. Caporaso JG, Kuczynski J, Stombaugh J, et al (2010) Correspondence QIIME allows analysis of high-throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat. Methods 7:335–336. doi:10.1038/nmeth0510-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Edgar RC, Haas BJ, Clemente JC, et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeSantis TZ, Hugenholtz P, Larsen N, et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072. doi:10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Segata N, Izard J, Waldron L, et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. doi:10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  41. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

  42. Tamura K, Stecher G, Peterson D, et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209–220

    CAS  PubMed  Google Scholar 

  44. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL (2012) IBD—what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 9:219–230. doi:10.1038/nrgastro.2012.14

    Article  CAS  PubMed  Google Scholar 

  45. Reeves AE, Theriot CM, Bergin IL, et al (2011) The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2:145–158. doi:10.4161/gmic.2.3.16333

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grønvold AMR, Mao Y, L’Abée-Lund TM, et al (2011) Fecal microbiota of calves in the clinical setting: effect of penicillin treatment. Vet. Microbiol. 153:354–360. doi:10.1016/j.vetmic.2011.05.040

    Article  PubMed  Google Scholar 

  47. De Menezes AB, Lewis E, O’Donovan M, et al (2011) Microbiome analysis of dairy cows fed pasture or total mixed ration diets. FEMS Microbiol. Ecol. 78:256–265. doi:10.1111/j.1574-6941.2011.01151.x

    Article  CAS  PubMed  Google Scholar 

  48. Edrington TS, Callaway TR, Ives SE, et al (2006) Seasonal shedding of O157:H7 in ruminants: a new hypothesis. Foodborne Pathog. Dis. 3:413–421

    Article  PubMed  Google Scholar 

  49. Magle SB, Kardash LH, Rothrock AO, et al (2015) Movements and habitat interactions of white-tailed deer: implications for chronic wasting disease management. Am. Midl. Nat. 173:267–282. doi:10.1674/amid-173-02-267-282.1

    Article  Google Scholar 

  50. Jenks J, Leslie D, Lochmiller R, Melchiors M (1994) Variation in gastrointestinal characteristics of male and female white-tailed deer: implications for resource partitioning. J. Mammal. 75:1045–1053

    Article  Google Scholar 

  51. Banks JC, Cary SC, Hogg ID (2009) The phylogeography of Adelie penguin faecal flora. Environ. Microbiol. 11:577–588. doi:10.1111/j.1462-2920.2008.01816.x

    Article  CAS  PubMed  Google Scholar 

  52. Goldberg E, Amir I, Zafran M, et al (2014) The correlation between Clostridium-difficile infection and human gut concentrations of Bacteroidetes phylum and clostridial species. Eur. J. Clin. Microbiol. Infect. Dis. 33:377–383. doi:10.1007/s10096-013-1966-x

    Article  CAS  PubMed  Google Scholar 

  53. Callaway TR, Edrington TS, Loneragan GH, et al (2013) Shiga Toxin-Producing Escherichia coli (STEC) ecology in cattle and management based options for reducing fecal shedding. 3

  54. Dong HJ, Kim W, An JU, et al (2016) The fecal microbial communities of dairy cattle shedding Shiga toxin–producing Escherichia coli or campylobacter jejuni. Foodborne Pathog. Dis. 13:502–508. doi:10.1089/fpd.2016.2121

    Article  CAS  PubMed  Google Scholar 

  55. Abu-Ali GS, Lacher DW, Wick LM, et al (2009) Genomic diversity of pathogenic Escherichia coli of the EHEC 2 clonal complex. BMC Genomics 10:296. doi:10.1186/1471-2164-10-296

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ahmer BMM, Gunn JS (2011) Interaction of Salmonella spp. with the intestinal microbiota. Front. Microbiol. 2:1–9. doi:10.3389/fmicb.2011.00101

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the US Department of Agriculture (Project number 2011-67005-30004) and the W.K. Kellogg Foundation. This is publication 1991 from the Kellogg Biological Station. We would like to thank Jacquelyn Del_Valle, Rebekah E. Mosci, and Lindsey Ouellette for the sample collection and pathogen detection; the Fulbright commission from Peru, the Office for International Students and Scholars (OISS) from Michigan State University, and the National Institutes of Health Merial Scholars Program for the student funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lisette Delgado.

Electronic Supplementary Material

ESM 1

(DOCX 1165 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, M.L., Singh, P., Funk, J.A. et al. Intestinal Microbial Community Dynamics of White-Tailed Deer (Odocoileus virginianus) in an Agroecosystem. Microb Ecol 74, 496–506 (2017). https://doi.org/10.1007/s00248-017-0961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0961-7

Keywords

Navigation