Skip to main content
Log in

The First Complete cDNA Sequence of the Hemocyanin from a Bivalve, the Protobranch Nucula nucleus

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

By cDNA sequencing we have achieved the first, and complete, hemocyanin sequence of a bivalve (Nucula nucleus). This extracellular oxygen-binding protein consists of two immunologically distinguishable isoforms, here termed NnH1 and NnH2. They share a mean sequence identity of 61%, both contain a linear arrangement of eight paralogous, ca.50-kDa functional units (FUs a-h), and in both isoforms the C-terminal FU-h possesses an extension of ca. 100 amino acids. The cDNA of NnH1 comprises 11,090 bp, subdivided into a 5′utr of 75 bp, a 3′utr of 791 bp, and an open reading frame for a signal peptide of 19 amino acids plus a polypeptide of 3389 amino acids (M r = 385 kDa). The cDNA of NnH2 comprises 10,849 bp, subdivided into a 5′utr of 47 bp, a 3′utr of 647 bp, and an open reading frame for a signal peptide of 16 amino acids plus a polypeptide of 3369 amino acids (M r = 387 kDa). In contrast to other molluscan hemocyanins, which are highly glycosylated, the bivalve hemocyanin sequence exhibits only four potential N-glycosylation sites, and within both isoforms a peculiar indel is present, surrounding the highly conserved copper-binding site CuA. Phylogenetic analyses of NnH1 and NnH2, compared to the known hemocyanin sequences of gastropods and cephalopods, reveal a statistically sound closer relationship between gastropod and protobranch hemocyanin than to cephalopod hemocyanin. Assuming a molecular clock, the last common ancestor of protobranch and gastropods lived 494 million ± 50 million years ago, in conformity with fossil records from the late Cambrian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Adamkevicz SL, Harasewych MG, Blake J, Saudek D, Bult CJ (1997) A molecular phylogeny of the Bivalve mollusks. Mol Biol Evol 14:619–629

    Google Scholar 

  • Albrecht U, Keller H, Gebauer W, Markl J (2001) Rhogocytes (pore cells) as the site of hemocyanin biosynthesis in the marine gastropod Haliotis tuberculata. Cell Tissue Res 304:455–462

    Article  PubMed  CAS  Google Scholar 

  • Altenhein B, Markl J, Lieb B (2002) Gene structure and hemocyanin isoform HtH2 from the mollusc Haliotis tuberculata indicate early and late intron hot spots. Gene 301:53–60

    Article  PubMed  CAS  Google Scholar 

  • Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209:331–336

    PubMed  CAS  Google Scholar 

  • Benton MJ (1993) The fossil record 2. Chapman & Hall, London, pp 125–270

    Google Scholar 

  • Bergmann S, Lieb B, Ruth P, Markl J (2006). The hemocyanin from a living fossil, the cephalopod Nautilus pompilius: protein structure, gene organization, and evolution. J Mol Evol 62:362–374

    Article  PubMed  CAS  Google Scholar 

  • Campbell DC, Hoekstra KJ, Carter JG (1998) 18S ribosomal DNA and evolutionary relationships within the Bivalvia. In: Johnston PA, Haggart JW (eds) Bivalves: an eon of evolution — Palaeobiological studies honouring Norman D. Newell. University of Calgary Press, Calgary, pp 1–45

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Cope JCW (2000) A new look at early bivalve phylogeny. In: Harper EM, Taylor JD, Crame JA (eds) Evolutionary Biology of the Bivalvia Vol 177. Special Publication of the Geological Society, London, pp 81–95

    Google Scholar 

  • Cuff ME, Miller KI, van Holde KE, Hendrickson WA (1998) Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol 278:855–870

    Article  PubMed  CAS  Google Scholar 

  • Declerq L, Witters R, Preaux G (1990) Partial sequence determination of Sepia officinalis hemocyanin via cDNA. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, euven, Belgium, pp 131–134

    Google Scholar 

  • Felsenstein J (2001) PHYLIP (Phylogeny Inference Package), version 3.6alpha2. Distributed by the author, Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Gebauer W, Harris JR, Heid H, Stiling M, Hillenbrand R, Sohngen S, Wegener-Strake A, Markl J (1994) Quaternary structure, subunits and domain patterns of two dicrete forms of keyhole limpet hemocyanin: KLH1 and KLH2. Zoology 98:51–68

    CAS  Google Scholar 

  • Gebauer W, Stoeva S, Voelter W, Danese E, Salvato B, Beltramini M, Markl J (1999) Hemocyanin subunit organization of the gastropod Rapana thomasiana. Arch Biochem Biophys 372:128–134

    Article  PubMed  CAS  Google Scholar 

  • Giribet G, Wheeler W (2002) On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invert Biol 121:271–324

    Article  Google Scholar 

  • Gustafsen RG, Reid RGB (1986) Development of the pericalymma larva of Solemya reidi Bernard 1980. (Bivalvia, Cryptodonta, Solemyidae) as revealed by light and electron microscopy. Mar Biol 93:411–427

    Article  Google Scholar 

  • Gustafsen RG, Reid RGB (1988) Larval and post-larval morphogenesis in the gutless protobranch bivalve Solemya reidi (Cryptodonta, Solemyidae). Mar Biol 97:373–387

    Article  Google Scholar 

  • Harris JR, Home RW (1991) Negative staining. In: Harris JR (ed) Electron microscopy in biology. IRL Press, Oxford, pp 203–228

    Google Scholar 

  • Harris JR, Markl J (2000) Keyhole limpet hemocyanin: molecular structure of a potent marine immunoactivator. A review. Eur Urol 37:24–33

    Article  CAS  Google Scholar 

  • Herskovits TT, Hamilton MG (1991) Higher order assemblies of molluscan hemocyanins. Comp Biochem Physiol B 99:19–34

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. ioinformatics 17:754–755

    Article  CAS  Google Scholar 

  • Idakieva K, Severov S, Svendsen I, Genov N, Stoeva S, Beltramini M, Tognon G, Di Muro P, Salvato B (1993) Structural properties of Rapana thomasiana grosse hemocyanin: isolation, characterization and N-terminal amino acid sequence of two different dissociation products. Comp Biochem Physiol B 106:53–59

    Article  PubMed  CAS  Google Scholar 

  • Keen AM (1969) Family Nuculidae Gray 1824. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology. Part N. Mollusca 6. Vol 1. Bivalvia. Geological Society of America, Boulder, CO/University of Kansas Press, Lawrence pp N230–N231

    Google Scholar 

  • Kenchington EL, Roddick DL, Singh RK, Bird CJ (1994) Analysis of the small-subunit rRNA gene sequences from six families of molluscs. J Mar Biotechnol 1:215–217

    CAS  Google Scholar 

  • Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a discopper center. Nat Struct Biol 5:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Kroll J (1973) Crossed-line immunoelectrophoresis. Scand J Immunol 2:79–81

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lambert O, Taveau JC, Boisset N, Lamy JN (1995) Three-dimensional reconstruction of the hemocyanin of the protobranch bivalve mollusc Nucula hanleyi from frozen-hydrated specimens. Arch Biochem Biophys 319:231–243

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Gielens C, Lambert O, Taveau JC, Motta G, Loncke P, De Geest N, Preaux G, Lamy J (1993) Further approaches to the quaternary structure of Octopus hemocyanin: a model based on immunoelectron microscopy and image processing. Arch Biochem Biophys 305:17–29

    Article  PubMed  CAS  Google Scholar 

  • Lang WH, van Holde KE (1991) Cloning and sequencing of Octopus dofleini hemocyanin cDNA: derived sequences of functional units Ode and Odf. Proc Natl Acad Sci USA 88:244–248

    Article  PubMed  CAS  Google Scholar 

  • Lieb B, Markl J (2004) Evolution of molluscan hemocyanins as deduced from DNA sequencing. Micron 35:117–119

    Article  PubMed  CAS  Google Scholar 

  • Lieb B, Altenhein B, Markl J (2000) The sequence of a gastropod hemocyanin (HtHl from Haliotis tuberculatd). J Biol Chem 275:5675–5681

    Article  PubMed  CAS  Google Scholar 

  • Lieb B, Altenhein B, Markl J, Vincent A, van Olden E, van Holde KE, Miller KI (2001) Structures of two molluscan hemocyanin genes: significance for gene evolution. Proc Natl Acad Sci USA 98:4546–4551

    Article  PubMed  CAS  Google Scholar 

  • Lieb B, Boisguerin V, Gebauer W, Markl J (2004) cDNA sequence, protein structure, and evolution of the single hemocyanin from Aplysia californica, an ophistobranch gastropod. J Mol Evol 59:1–10

    Article  CAS  Google Scholar 

  • Mangum CP, Miller KI, Scott JL, van Holde KE, Morse MP (1987). Bivalve hemocyanin structural, functional, and phylogenetic relationships. J Biol Bull 173:205–221

    Article  CAS  Google Scholar 

  • Markl J, Savel-Niemann A, Wegener-Strake A, Silling M, Schneider A, Gebauer W, Harris R (1991) The role of two distinct subunit types in the architecture of keyhole limpet hemocyanin (KLH). Naturwissenschaften 78:512–514

    Article  CAS  Google Scholar 

  • Markl J, Lieb B, Gebauer W, Altenhein B, Meissner U, Harris JR (2001) Marine tumor vaccine carriers: structure of the molluscan hemocyanins KLH and HtH. J Cancer Res Clin Oncol 127:R3–R9

    Article  PubMed  CAS  Google Scholar 

  • Meissner U, Dube P, Harris JR, Stark H, Markl J (2000) Structure of a molluscan hemocyanin didecamer (HtHl irom Hanotis tuberculata) at 12 Å resolution by cryoelectron microscopy. J Mol Biol 298:2l–34

    Article  CAS  Google Scholar 

  • Miller KI, Schabtach E, van Holde KE (1990) Arrangement of subunits and domains within the Octopus dofleini hemocyanin molecule. Proc Natl Acad Sci USA 87:1496–1500

    Article  PubMed  CAS  Google Scholar 

  • Miller KI, Cuff ME, Lang WF, Varga-Weisz P, Field KG, van Holde KE (1998) Sequence of the Octopus dofleini hemocyanin subunit: structural and evolutionary implications. J Mol Biol 278:827–842

    Article  PubMed  CAS  Google Scholar 

  • Morse MP, Meyhofer E, Otto JJ, Kuzirian AM (1986) Hemocyanin respiratory pigment in bivalve mollusks. Science 231:1302–1304

    Article  PubMed  CAS  Google Scholar 

  • Morton BS (1996) The evolutionary history of the Bivalvia. In: Taylor JD (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford, pp 337–359

    Google Scholar 

  • Nicholas KB, Nicholas HB Jr (1997) GeneDoc: analysis and visualization of genetic variation. Distributed by the authors

  • Perbandt M, Guthohrlein EW, Rypniewski W, Idakieva K, Stoeva S, Voelter W, Genov N, Betzel C (2003) The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity. Biochemistry 42:6341–6346

    Article  PubMed  CAS  Google Scholar 

  • Purchon RD (1956) The stomach in the Protobranchia and Septibranchia (Lamellibranchia). Proc Zool Soc London 127:511–525

    Google Scholar 

  • Ruth P, Schipp R, Kllissendorf B (1988) Cytomorphology and copper content of the basal cells in the midgut-gland of Nautilus (Cephalopoda, Tetrabranchiata). A contribution to the localization of hemocyanin synthesis. Zoomorphology 108:1–11

    Article  Google Scholar 

  • Salvato B, Santamaria M, Beltramini M, Alzuet G, Casella L (1998) The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity. Biochemistry 37:14065–14077

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sminia T (1977) Haemocyanin-producing cells in gastropod molluscs. In: Bannister JV (ed) Structure ancLfunction of haemocyanin. Berlin, Springer, pp 279–288

    Google Scholar 

  • Söhngen SM, Stahlmann A, Harris JR, Muller SA, Engel A, Markl J (1997) Mass determination subunit organization and control of oligomerization states of keyhole limpet hemocyanin (KLH). Eur J Biochem 248:602–614

    Article  PubMed  Google Scholar 

  • Stasek CR (1972) The molluscan framework. In: Florkin M, Scheer BT (eds) Chemical zoology. Vol 7. Mollusca. Academic Press, New York, pp 1–44

    Google Scholar 

  • Tajima F (1993) Simple methods for testing molecular clock hypothesis. Genetics 135:599–607

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Topham R, Tesh S, Westcott A, Cole G, Mercatante D, Kaufman G, Bonaventura C (1999) Disulfide bond reduction: A powerful, chemical probe for the study of structure-function relationships in the hemocyanins. Arch Biochem Biophys 369:261–266

    Article  PubMed  CAS  Google Scholar 

  • van Gelder CWG, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45:1309–1323

    Article  PubMed  CAS  Google Scholar 

  • van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81

    Article  PubMed  CAS  Google Scholar 

  • Waller TR (1998) Origin of the molluscan class Bivalvia and a phylogeny of major groups. In: Johnston PA, Haggart JW (eds) Bivalves: an eon of evolution — Palaeobiological studies honouring Norman D. Newell. University of Calgary Press, Calgary, pp 1–45

    Google Scholar 

  • Weeke B (1973) Crossed immunoelectrophoresis. Scand J Immunol 2:47–56

    Article  Google Scholar 

  • Winnepenninckx B, Backeljau T, De Wachter R (1994) Small ribosomal subunit RNA and the phylogeny of Mollusca. Nautilus 2:98–110

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. J. Robin Harris (Institute of Zoology, University of Mainz) for critically, reading the manuscript and correcting the language and our colleague Dr. Wolfgang Gebauer for providing the electron micrographs. We also thank Dr. Frank Zal (Roscoff, France) for providing animals. This work was financially supported by DFG grants to J.M. (Ma843), the biosyn company (Fellbach, Germany), and the Feldbausch foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Lieb.

Additional information

[Reviewing Editor: Dr. Rüdiger Cerff]

The sequence reported in this paper has been deposited in the EMBL/GenBank database under accession number AJ786639 for NnH1 and AJ786640 for NnH2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, S., Markl, J. & Lieb, B. The First Complete cDNA Sequence of the Hemocyanin from a Bivalve, the Protobranch Nucula nucleus . J Mol Evol 64, 500–510 (2007). https://doi.org/10.1007/s00239-006-0036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0036-8

Keywords

Navigation