Skip to main content
Log in

Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The first-known aptamer for the stress biomarker cortisol was selected using a tunable stringency magnetic bead selection strategy. The capture DNA probe immobilized on the beads was systematically lengthened to increase the number of bases bound to the complementary pool primer regions following selection enrichment. This resulted in a single sequence (15–1) dominating the final round 15 pool, where the same sequence was the second-highest copy number candidate in the enriched pool with the shorter capture DNA probe (round 13). A thorough analysis of the next-generation sequencing results showed that a high copy number may only correlate with enhanced affinity under certain stringency and enrichment conditions, in contrast with prior published reports. Aptamer 15–1 demonstrated enhanced binding to cortisol (K d = 6.9 ± 2.8 μM by equilibrium dialysis; 16.1 ± 0.6 μM by microscale thermophoresis) when compared with the top sequence from round 13 and the negative control progesterone. Whereas most aptamer selections terminate at the selection round demonstrating the highest enrichment, this work shows that extending the selection with higher stringency conditions leads to lower amounts eluted by the target but higher copy numbers of a sequence with enhanced binding. The structure-switching aptamer was applied to a gold nanoparticle assay in buffer and was shown to discriminate between cortisol and two other stress biomarkers, norepinephrine and epinephrine, and a structurally analogous biomarker of liver dysfunction, cholic acid. We believe this approach enhances aptamer selection and serves as proof-of-principle work toward development of point-of-care diagnostics for medical, combat, or bioterrorism targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gatti R, Antonelli G, Prearo M, Spinella P, Cappellin E, De Palo EF (2009) Clin Biochem 42:1205–1217

    Article  CAS  Google Scholar 

  2. Morgan CA III, Wang S, Rasmusson A, Hazlett G, Anderson G, Charney DS (2001) Psychosom Med 63:412–422

    Article  CAS  Google Scholar 

  3. Arya SK, Ghornokur G, Venugopal M, Bhansali S (2010) Analyst 135:1941–1946

    Article  CAS  Google Scholar 

  4. Stevens RC, Soelberg SD, Near S, Furlong CE (2008) Anal Chem 80:6747–6751

    Article  CAS  Google Scholar 

  5. Kapczinski F, Vieta E, Andreazza AC, Frey BN, Gomes FA, Tramontina J, Kauer-Sant’Anna M, Grassi-Oliveira R, Post RM (2008) Neurosci Biobehav Rev 32:675–692

    Article  Google Scholar 

  6. Leung W, Chan P, Bosgoed F, Lehmann K, Renneberg I, Lehmann M, Renneberg R (2003) J Immunol Methods 281:109–118

    Article  CAS  Google Scholar 

  7. Restituto P, Galofré JC, Gil MJ, Mugueta C, Santos S, Monreal JI, Varo N (2008) Clin Biochem 41:688–692

    Article  CAS  Google Scholar 

  8. Stoltenburg R, Reinemann C, Strehlitz B (2007) Biomol Eng 24:381–403

    Article  CAS  Google Scholar 

  9. Luzi E, Minunni M, Tombelli S, Mascini M (2003) TrAC 11:810–818

    Google Scholar 

  10. Jayasena SD (1999) Clin Chem 45:1628–1650

    CAS  Google Scholar 

  11. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  12. Luo F, Zheng L, Chen S, Cai Q, Lin Z, Qiu B, Chen G (2012) Chem Commun 48:6387–6389

    Article  CAS  Google Scholar 

  13. Li H, Rothberg LJ (2004) J Am Chem Soc 126:10958–10961

    Article  CAS  Google Scholar 

  14. Chávez JL, MacCuspie RI, Stone MO, Kelley-Loughnane N (2012) J Nanopart Res 14:1166–1177

    Article  Google Scholar 

  15. Lee J-H, Hwang J-H, Nam J-M (2012) Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. doi:10.1002/wnan.1196

  16. Morse DP (2007) Biochem Biophys Res Commun 359:94–101

    Article  CAS  Google Scholar 

  17. Nutiu R, Li Y (2003) J Am Chem Soc 125:4771–4778

    Article  CAS  Google Scholar 

  18. Liu J, Lu Y (2006) Nat Protoc 1:246–252

    Article  CAS  Google Scholar 

  19. Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Biosens Bioelectron 22:2525–2531

    Article  CAS  Google Scholar 

  20. Wiebe JP (2006) Endocr-Relat Cancer 13:717–738

    Article  CAS  Google Scholar 

  21. Han K, Liang Z, Zhou N (2010) Sensors 10:4541–4557

    Article  CAS  Google Scholar 

  22. Hagen JA, Kim SN, Bayraktaroglu B, Leedy K, Chávez JL, Kelley-Loughnane N, Naik RR, Stone MO (2011) Sensors 11:6645–6655

    Article  CAS  Google Scholar 

  23. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) J Am Chem Soc 128:3138–3139

    Article  CAS  Google Scholar 

  24. Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C (2008) Small 4:1196–1200

    Article  CAS  Google Scholar 

  25. Djordjevic M (2007) Biomol Eng 24:179–189

    Article  CAS  Google Scholar 

  26. Van Simaeys D, López-Colón D, Sefah K, Sutphen R, Jimenez E, Tan W (2010) PlosOne 5:e13770

    Article  Google Scholar 

  27. Martin JA, Parekh P, Kim Y, Morey TE, Sefah K, Gravenstein N, Dennis DM, Tan W (2013) PlosOne 8:e57341

    Article  CAS  Google Scholar 

  28. Hoon S, Zhou B, Janda KD, Brenner S, Scolnick J (2011) BioTechniques 51:413–416

    Article  CAS  Google Scholar 

  29. Kupakuwana GV, Crill JE III, McPike MP, Borer PN (2011) PlosOne 6:e19395

    Article  CAS  Google Scholar 

  30. Bing T, Yang X, Mei H, Cao Z, Shangguan D (2010) Bioorg Med Chem 18:1798–1805

    Article  CAS  Google Scholar 

  31. Göringer HU, Homann M, Lorger M (2003) Int J Parasitol 33:1309–1317

    Article  Google Scholar 

  32. Sefah K, Meng L, López-Colón D, Jimenez E, Liu C, Tan W (2010) PlosOne 5:e14269

    Article  Google Scholar 

  33. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Nature 355:564–566

    Article  CAS  Google Scholar 

  34. Schütze T, Wilhelm B, Greiner N, Braun H, Peter F, Mörl M, Erdmann VA, Lehrach H, Konthur Z, Menger M, Arndt PF, Glökler J (2011) PlosOne 6:e29604

    Article  Google Scholar 

  35. Ramakrishnan M, de Melo FA, Kinsey BM, Ladbury JE, Kosten TR, Orson FM (2012) PlosOne 7:e40518

    Article  CAS  Google Scholar 

  36. Lundy BL, Jones NA, Field T, Nearing G, Davalos M, Pietro PA, Schanberg S, Kuhn C (1999) Infant Behav Dev 22:119–129

    Article  Google Scholar 

  37. Karlamangla S, Singer BH, Greendale GA, Seeman TE (2005) Psychoneuroendocrinology 30:453–460

    Article  CAS  Google Scholar 

  38. Lemieux M, Coe CL (1995) Psychosom Med 57:105–115

    Article  CAS  Google Scholar 

  39. Kosten RR, Mason JW, Giller EL, Ostroff RB, Harkness L (1987) Psychoneuroendocrinology 12:13–20

    Article  CAS  Google Scholar 

  40. Loucks EB, Juster RP, Pruessner JC (2008) Soc Sci Med 66:525–530

    Article  Google Scholar 

  41. Timbrell JA (1998) Toxicology 129:1–12

    Article  CAS  Google Scholar 

  42. Battig MR, Soontornworajit B, Wang Y (2012) J Am Chem Soc 134:12410–12413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Craig Murdock for scientific discussion and aid in graphics enhancement. They also thank Dr. Kyung Yu for guidance in the radiolabeled equilibrium dialysis experiments. This research was performed while the author (JAM) held a National Research Council Research Associateship Award at Wright-Patterson Air Force Base. This work was supported by the Air Force Office of Scientific Research, Air Force Research Laboratory, and Bio-X Strategic Technology Thrust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Kelley-Loughnane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, J.A., Chávez, J.L., Chushak, Y. et al. Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol. Anal Bioanal Chem 406, 4637–4647 (2014). https://doi.org/10.1007/s00216-014-7883-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7883-8

Keywords

Navigation