Skip to main content
Log in

Sitagliptin exerts anti-inflammatory and anti-allergic effects in ovalbumin-induced murine model of allergic airway disease

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Sitagliptin, a new oral glucose lowering medication, is used for treatment of type 2 diabetes mellitus. The anti-inflammatory property of sitagliptin is reported, yet no studies have been done on asthma. In the present study, the effect of sitagliptin on allergic asthma was investigated using ovalbumin (OVA)-induced asthma model in mice. Swiss male albino mice sensitized and challenged to ovalbumin were treated with sitagliptin (8 mg/kg administered orally twice a day). Drug treatment was done on each day from days 16 to 23, 1 h before the challenge on the days of challenge. Sitagliptin treatment markedly decreased inflammatory cell accumulation in bronchoalveolar lavage (BAL) fluid and in the lungs, as revealed by histopathological examination. Furthermore, the levels of interleukin (IL)-13 in BAL fluid, total and OVA specific immunoglobulins (Ig)-E in serum, were significantly reduced as compared to the OVA group. In addition, sitagliptin significantly increased superoxidase dismutase (SOD) and reduced glutathione (GSH) activities with significant decrease in malondialdehyde (MDA) content in the lung. Importantly, sitagliptin decreased mRNA expression of the inflammatory cytokines tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) in lung tissues as compared to the OVA group. Moreover, nitric oxide content as well as the mRNA expression of inducible nitric oxide synthase (iNOS) was remarkably decreased by sitagliptin treatment. Sitagliptin attenuates the allergic airway inflammation suggesting that sitagliptin may have applications in the treatment of bronchial asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAL:

Bronchoalveolar lavage

DPP-4:

Dipeptidylpeptidase-4

IgE:

Immunoglobulin E

IL:

Interleukin

OVA:

Ovalbumin

MDA:

Malondialdehyde

GSH:

Reduced glutathione

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor-α

TGF-β1 :

Transforming growth factor-β1

iNOS:

Inducible nitric oxide synthase

References

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  • Berger P, Girodet PO, Tunon-de-Lara JM (2005) Mast cell myositis: a new feature of allergic asthma. Allergy 60:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Boldogh I, Bacsi A, Choudhury BK, Dharajiya N, Alam R, Hazra TK, Mitra S, Goldblum RM, Surs S (2005) ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 115:2169–2179

    Article  PubMed  CAS  Google Scholar 

  • Brightling CE, Symon FA, Birring SS, Bradding P, Pavord ID, Wardlaw AJ (2002) Th2 cytokine expression in bronchoalveolar lavage fluid T lymphocytes and bronchial submucosa is a feature of asthma and eosinophilic bronchitis. J Allergy Clin Immunol 110:899–905

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122:456–468

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Hamelmann E, Tadeda K, Oshiba A, Gelfand EW (1999) Role of IgE in the development of allergic airway inflammation and airway hyperresponsiveness—a murine model. Allergy 54:297–305

    Article  PubMed  CAS  Google Scholar 

  • Holgate ST (2008) The airway epithelium is central to the pathogenesis of asthma. Allergol Int 57:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ishii S, Nagase T, Shindou H, Takizawa H, Ouchi Y, Shimizu T (2004) Platelet-activating factor receptor develops airway hyperresponsiveness independently of airway inflammation in a murine asthma model. J Immunol 172:7095–7102

    PubMed  CAS  Google Scholar 

  • Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Shinebourne EA, Barnes PJ (1994) Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343:133–135

    Article  PubMed  CAS  Google Scholar 

  • Kruschinski C, Skripuletz T, Bedoui S, Tschernig T, Pabst R, Nassenstein C, Braun A, von Hörsten S (2005) CD26 (dipeptidyl-peptidase IV)-dependent recruitment of T cells in a rat asthma model. Clin Exp Immunol 139:17–24

    Article  PubMed  CAS  Google Scholar 

  • Lee MY, Seo CS, Lee NH, Ha H, Lee JA, Lee H, Lee KY, Shin HK (2010) Anti-asthmatic effect of schizandrin on OVA-induced airway inflammation in a murine asthma model. Int Immunopharmacol 10:1374–1379

    Article  PubMed  CAS  Google Scholar 

  • Mest HJ, Mentlein R (2005) Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia 48:616–620

    Article  PubMed  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  • Moon DO, Kim MO, Lee HJ, Choi YH, Park YM, Heo MS, Kim GY (2008) Curcumin attenuates ovalbumin-induced airway inflammation by regulating nitric oxide. Biochem Biophys Res Commun 375:275–279

    Article  PubMed  CAS  Google Scholar 

  • Morimoto C, Schlossman SF (1998) The structure and function of CD26 in the T-cell immune response. Immunol Rev 161:55–70

    Article  PubMed  CAS  Google Scholar 

  • Myou S, Leff AR, Myo S, Boetticher E, Tong J, Meliton AY, Liu J, Munoz NM, Zhu X (2003) Blockade of inflammation and airway hyperresponsiveness in immunesensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J Exp Med 198:1573–1582

    Article  PubMed  CAS  Google Scholar 

  • Nader MA (2011) Inhibition of anaphylaxis like reaction and mast cell activation by sitagliptin. Int Immunopharmacol 11:1052–1056

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Takatsu K (2007) Role of cytokines in allergic airway inflammation. Int Arch Allergy Immunol 142:265–273

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei KI, Foster PS, Rothenberg ME (2001) IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J Allergy Clin Immunol 108:594–601

    Article  PubMed  CAS  Google Scholar 

  • Ricciardolo FLM (2003) Multiple roles of nitric oxide in the airways. Thorax 58:175–182

    Article  PubMed  CAS  Google Scholar 

  • Roh SS, Kim SH, Lee YC, Seo YB (2008) Effects of radix adenophorae and cyclosporine A on an OVA-induced murine model of asthma by suppressing to T cells activity, eosinophilia, and bronchial hyper-responsiveness. Mediat Inflamm 781425:1–11

    Article  Google Scholar 

  • Sadeghi-Hashjin G, Folkerts G, Henricks PA, Verheyen AK, van der Linde HJ, van Ark I, Coene A, Nijkamp FP (1996) Peroxynitrite induces airway hyperresponsiveness in guinea pigs in vitro and in vivo. Am J Respir Crit Care Med 153:1697–1701

    PubMed  CAS  Google Scholar 

  • Secor ER Jr, Carson WF, Cloutier MM, Guernsey LA, Schramm CM, Wu CA, Thrall RS (2005) Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell Immunol 237:68–75

    Article  PubMed  CAS  Google Scholar 

  • Skripuletz T, Schmiedl A, Schade J, Bedoui S, Glaab T, Pabst R, von Hörsten S, Stephan M (2007) Dose-dependent recruitment of CD251 and CD261 T cells in a novel F344 rat model of asthma. Am J Physiol Lung Cell Mol Physiol 292:L1564–L1571

    Article  PubMed  CAS  Google Scholar 

  • Teramoto S, Shu CY, Ouchi Y, Fukuchi Y (1996) Increased spontaneous production and generation of superoxide anion by blood neutrophils in patients with asthma. J Asthma 33:149–155

    Article  PubMed  CAS  Google Scholar 

  • Thomas PS (2001) Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asthma. Immunol Cell Biol 79:132–140

    Article  PubMed  CAS  Google Scholar 

  • van der Velden VH, Wierenga-Wolf AF, Adriaansen-Soeting PW, Overbeek SE, Moller GM, Hoogsteden HC, Versnel MA (1998) Expression of aminopeptidase N and dipeptidyl peptidase IV in the healthy and asthmatic bronchus. Clin Exp Allergy 28:110–120

    Article  PubMed  Google Scholar 

  • van der Velden VH, Naber BA, van Hal PT, Overbeek SE, Hoogsteden HC, Versnel MA (1999) Peptidase activities in serum and bronchoalveolar lavage fluid from allergic asthmatics—comparison with healthy non-smokers and smokers and effects of inhaled glucocorticoids. Clin Exp Allergy 29:813–823

    Article  Google Scholar 

  • Williams YN, Baba H, Hayashi S, Ikai H, Sugita T, Tanaka S, Miyasaka N, Kubota T (2003) Dipeptidyl peptidase IV on activated T cells as a target molecule for therapy of rheumatoid arthritis. Clin Exp Immunol 131:68–74

    Article  PubMed  CAS  Google Scholar 

  • Wills-Karp M (1999) Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 17:255–281

    Article  PubMed  CAS  Google Scholar 

  • Xie S, Sukkar MB, Issa R, Khorasani NM, Chung KF (2007) Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-beta. Am J Physiol Lung Cell Mol Physiol 293:245–253

    Article  Google Scholar 

  • Yuk JE, Woo JS, Yun CY, Lee JS, Kim JH, Song GY, Yang EJ, Hur IK, Kim IS (2007) Effects of lactose-beta-sitosterol and beta-sitosterol on ovalbumin induced lung inflammation in actively sensitized mice. Int Immunopharmacol 7:1517–1527

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manar A. Nader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nader, M.A., El-Awady, M.S., Shalaby, A.A. et al. Sitagliptin exerts anti-inflammatory and anti-allergic effects in ovalbumin-induced murine model of allergic airway disease. Naunyn-Schmiedeberg's Arch Pharmacol 385, 909–919 (2012). https://doi.org/10.1007/s00210-012-0772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0772-9

Keywords

Navigation