Skip to main content
Log in

The role of surface functionalization on the pulmonary inflammogenicity and translocation into mediastinal lymph nodes of graphene nanoplatelets in rats

  • Nanotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Graphene, a two-dimensional monocrystalline layer of carbon atoms, has potential in many applications not only in material sciences, but also in the biomedical fields, but there is little information about the role of surface modification on the toxicity of graphene-based nanomaterials. Here, we evaluated the role of surface functionalization of the graphene nanoplatelets (GNPs) on the pulmonary inflammogenicity and translocation into mediastinal lymph nodes using a rat intratracheal instillation model. Six types of GNPs were used: All types of GNPs were based on the pristine GNPs (GNPdot), and different functional groups were conjugated onto them including a COOH (GNPCOOH), COH \(\left( {{\text{GNP}}_{{{\text{O}}_{2} }} } \right)\), N–H \(\left( {{\text{GNP}}_{{{\text{N}}_{2} }} } \right)\), F x (GNPF), and N=H \(\left( {{\text{GNP}}_{{{\text{NH}}_{2} }} } \right)\). All types of GNPs showed very high potential for the generation of reactive oxygen species (ROS) in a dose-dependent manner when measured by a 2′7′-dichlorofluorescin diacetate assay. GNPs were instilled into the lungs of rats at 0.3 and 1 mg/rat for the evaluation of acute (24 h) inflammation and at 3 mg/rat for chronic (1 and 4 weeks) inflammation. At 24 h after instillation, all types of GNPs showed good dose-dependent increases in polymorphonuclear leukocytes with a clear dose-dependency although significant increases compared to vehicle control were found only in positively charged GNPs \(\left( {{\text{GNP}}_{{{\text{N}}_{2} }} \;{\text{and}}\;{\text{GNP}}_{{{\text{NH}}_{2} }} } \right)\). While the acute inflammation in all treatment groups was returned to control levels at 1 and 4 weeks after instillation, GNPs showed similar patterns of translocation into the mediastinal lymph nodes with a higher degree over time. This study implies that the main factors of GNPs for producing lung inflammation are the potential for ROS generation and surface charge. In addition, functional groups on the GNPs might not play an important role in the extrapulmonary translocation into the mediastinal lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asati A, Santra S, Kaittanis C, Perez JM (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4:5321–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco A (2013) Graphene: safe or toxic? The two faces of the medal. Angew Chem Int Ed Engl 52:4986–4997

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang B, Liu G, Zhuang X, Kang ET (2012) Graphene and its derivatives: switching ON and OFF. Chem Soc Rev 41:4688–4707

    Article  CAS  PubMed  Google Scholar 

  • Cho WS, Choi M, Han BS, Cho M, Oh J, Park K, Kim SJ, Kim SH, Jeong J (2007) Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett 175:24–33

    Article  CAS  PubMed  Google Scholar 

  • Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K (2010) Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118:1699–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson K, Schinwald A, Murphy F, Cho WS, Duffin R, Tran L, Poland C (2013) The biologically effective dose in inhalation nanotoxicology. Acc Chem Res 46:723–732

    Article  CAS  PubMed  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconj Chem 15:897–900

    Article  CAS  Google Scholar 

  • Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  CAS  PubMed  Google Scholar 

  • Jeong J, Kim J, Seok SH, Cho WS (2015) Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch Toxicol. doi:10.1007/s00204-015-1493-x

    Google Scholar 

  • Kim J, Chankeshwara SV, Thielbeer F, Jeong J, Donaldson K, Bradley M, Cho WS (2015) Surface charge determines the lung inflammogenicity: a study with polystryene nanoparticles. Nanotoxicology 6:1–8

    Article  Google Scholar 

  • Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33:402–411

    Article  PubMed  Google Scholar 

  • Li B, Yang J, Huang Q, Zhang Y, Peng C, Zhang Y, He Y, Shi J, Li W, Hu J, Fan C (2013) Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater 5:e44

    Article  CAS  Google Scholar 

  • Li Y, Feng L, Shi X, Wang X, Yang Y, Yang K, Liu T, Yang G, Liu Z (2014) Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small 10:1544–1554

    Article  CAS  PubMed  Google Scholar 

  • Lison D, Laloy J, Corazzari I, Muller J, Rabolli V, Panin N, Huaux F, Fenoglio I, Fubini B (2009) Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicol Sci 108:472–481

    Article  CAS  PubMed  Google Scholar 

  • Ma-Hock L, Strauss V, Treumann S, Kuttler K, Wohlleben W, Hofmann T, Groters S, Wiench K, van Ravenzwaay B, Landsiedel R (2013) Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol 10:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Lee GH, Han BS, Lee BS, Lee S, Cho MH, Kim JH, Kim DW (2015) Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol 89(9):1557–1568

    Article  CAS  PubMed  Google Scholar 

  • Roberts JR, Antonini JM, Porter DW, Chapman RS, Scabilloni JF, Young SH, Schwegler-Berry D, Castranova V, Mercer RR (2013) Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Part Fibre Toxicol 10:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdorster G (2010) Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73(5):445–461

    Article  CAS  PubMed  Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    Article  CAS  PubMed  Google Scholar 

  • Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6:736–746

    Article  CAS  PubMed  Google Scholar 

  • Schinwald A, Murphy F, Askounis A, Koutsos V, Sefiane K, Donaldson K, Campbell CJ (2014) Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology 8:824–832

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Gracio JJ, Dash D (2012) Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6:2731–2740

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Cui LF, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  PubMed  Google Scholar 

  • Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Liu J, Wang Q, Hui R, Chen Z, Maroni VA, Wu J (2012a) Plasmonic graphene transparent conductors. Adv Mater 24:71–76

    Article  Google Scholar 

  • Xu J, Futakuchi M, Shimizu H, Alexander DB, Yanagihara K, Fukamachi K, Suzui M, Kanno J, Hirose A, Ogata A, Sakamoto Y, Nakae D, Omori T, Tsuda H (2012b) Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci 103:2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Feng L, Shi X, Liu Z (2013a) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Li Y, Tan X, Peng R, Liu Z (2013b) Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9:1492–1503

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yang K, Feng L, Liu Z (2011) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49:4040–4049

    Article  CAS  Google Scholar 

  • Zhou X, Liang F (2014) Application of graphene/graphene oxide in biomedicine and biotechnology. Curr Med Chem 21:855–869

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Ministry of Food and Drug Safety (13181MFDS605 and 14181MFDS458). We thanks to Dr. Beom-Seok Han in Hoseo University for his contribution on histopathology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayoung Jeong or Wan-Seob Cho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.K., Jeong, A., Bae, J. et al. The role of surface functionalization on the pulmonary inflammogenicity and translocation into mediastinal lymph nodes of graphene nanoplatelets in rats. Arch Toxicol 91, 667–676 (2017). https://doi.org/10.1007/s00204-016-1706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1706-y

Keywords

Navigation