Skip to main content
Log in

Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles

  • Nanotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm2/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Castranova V, Schulte PA, Zumwalde RD (2013) Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 46(3):642–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K (2010) Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118(12):1699–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho WS, Duffin R, Bradley M, Megson IL, MacNee W, Howie SEM, Donaldson K (2012) NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J 39(3):546–557

    Article  CAS  PubMed  Google Scholar 

  • Cho WS, Duffin R, Bradley M, Megson IL, Macnee W, Lee JK, Jeong J, Donaldson K (2013) Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 10(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi WS, Kim BJ, Lee HJ, Choi JW, Kim SD, Min NK (2012) Study on the micro-heater geometry in In, 2O3 micro electro mechanical systems gas sensor platforms and effects on NO2 gas detecting performances. J Nanosci Nanotechnol 12(2):1170–1173

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Won YL, Kim D, Yi GY, Park JS, Kim EA (2013) Subclinical interstitial lung damage in workers exposed to indium compounds. Ann Occup Environ Med 25(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummings KJ, Donat WE, Ettensohn DB, Roggli VL, Ingram P, Kreiss K (2010) Pulmonary alveolar proteinosis in workers at an indium processing facility. Am J Respir Crit Care Med 181(5):458–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings KJ, Nakano M, Omae K, Takeuchi K, Chonan T, Xiao YL, Harley RA, Roggli VL, Hebisawa A, Tallaksen RJ, Trapnell BC, Day GA, Saito R, Stanton ML, Suarthana E, Kreiss K (2012) Indium lung disease. Chest 141(6):1512–1521

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19(10):849–856

    Article  CAS  PubMed  Google Scholar 

  • Elouali S, Bloor LG, Binions R, Parkin IP, Carmalt CJ, Darr JA (2012) Gas sensing with nano-indium oxides (In2O3) prepared via continuous hydrothermal flow synthesis. Langmuir 28(3):1879–1885

    Article  CAS  PubMed  Google Scholar 

  • Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M, Biswas P, Finkelstein JN, Elder A, Oberdorster G (2012) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297(1–3):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirby PJ, Shines CJ, Taylor GJ, Bousquet RW, Price HC, Everitt JI, Morgan DL (2009) Pleural effects of indium phosphide in B6C3F1 mice: nonfibrous particulate induced pleural fibrosis. Exp Lung Res 35(10):858–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KP, Henry NW 3rd, Trochimowicz HJ, Reinhardt CF (1986) Pulmonary response to impaired lung clearance in rats following excessive TiO2 dust deposition. Environ Res 41(1):144–167

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Srisungsitthisunti P, Park S, Kim S, Xu X, Roy K, Janes DB, Zhou C, Ju S, Qi M (2011) Control of current saturation and threshold voltage shift in indium oxide nanowire transistors with femtosecond laser annealing. ACS Nano 5(2):1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Lim CH, Han JH, Cho HW, Kang M (2014) Studies on the toxicity and distribution of indium compounds according to particle size in sprague-dawley rats. Toxicol Res 30(1):55–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lison D, Delos M (2010) Pulmonary alveolar proteinosis in workers at an indium processing facility. Am J Respir Crit Care Med 182(4):578; author reply 578–579

    Article  PubMed  Google Scholar 

  • Lison D, Laloy J, Corazzari I, Muller J, Rabolli V, Panin N, Huaux F, Fenoglio I, Fubini B (2009) Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicol Sci 108(2):472–481

    Article  CAS  PubMed  Google Scholar 

  • McCunney RJ, Godefroi R (1989) Pulmonary alveolar proteinosis and cement dust: a case report. J Occup Med 31(3):233–237

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi Y, Myojo T, Oyabu T, Hashiba M, Lee BW, Yamamoto M, Todoroki M, Nishi K, Kadoya C, Ogami A, Morimoto Y, Tanaka I, Shimada M, Uchida K, Endoh S, Nakanishi J (2013) Comparison of dose-response relations between 4-week inhalation and intratracheal instillation of NiO nanoparticles using polimorphonuclear neutrophils in bronchoalveolar lavage fluid as a biomarker of pulmonary inflammation. Inhal Toxicol 25(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Murali A, Barve A, Leppert VJ, Risbud SH, Kennedy IM, Lee HWH (2001) Synthesis and characterization of indium oxide nanoparticles. Nano Lett 1(6):287–289

    Article  CAS  Google Scholar 

  • Omae K, Nakano M, Tanaka A, Hirata M, Hamaguchi T, Chonan T (2011) Indium lung—case reports and epidemiology. Int Arch Occup Environ Health 84(5):471–477

    Article  CAS  PubMed  Google Scholar 

  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdorster G (2010) Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73(5):445–461

    Article  CAS  PubMed  Google Scholar 

  • Samedov K, Aksu Y, Driess M (2012) Heterotermetallic indium lithium halostannates: low-temperature single-source precursors for tin-rich indium tin oxides and their application for thin-film transistors. Chemistry 18(25):7766–7779

    Article  CAS  PubMed  Google Scholar 

  • Sarlo K, Blackburn KL, Clark ED, Grothaus J, Chaney J, Neu S, Flood J, Abbott D, Bohne C, Casey K, Fryer C, Kuhn M (2009) Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology 263(2–3):117–126

    Article  CAS  PubMed  Google Scholar 

  • Sauni R, Jarvenpaa R, Iivonen E, Nevalainen S, Uitti J (2007) Pulmonary alveolar proteinosis induced by silica dust? Occup Med (Lond) 57(3):221–224

    Article  Google Scholar 

  • Seo WS, Jo HH, Lee K, Park JT (2003) Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv Mater 15(10):795–797

    Article  CAS  Google Scholar 

  • Stopford W, Turner J, Cappellini D, Brock T (2003) Bioaccessibility testing of cobalt compounds. J Environ Monit 5(4):675–680

    Article  CAS  PubMed  Google Scholar 

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108(2):452–461

    Article  CAS  PubMed  Google Scholar 

  • Toya T, Takata A, Otaki N, Takaya M, Serita F, Yoshida K, Kohyama N (2010) Pulmonary toxicity induced by intratracheal instillation of coarse and fine particles of cerium dioxide in male rats. Ind Health 48(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Beck DC, Yamamoto T, Berclaz PY, Abe S, Staudt MK, Carey BC, Filippi MD, Wert SE, Denson LA, Puchalski JT, Hauck DM, Trapnell BC (2007) GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N Engl J Med 356(6):567–579

    Article  CAS  PubMed  Google Scholar 

  • Vahter M, Akesson A, Liden C, Ceccatelli S, Berglund M (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104(1):85–95

    Article  CAS  PubMed  Google Scholar 

  • Wagner GR (1997) Asbestosis and silicosis. Lancet 349(9061):1311–1315

    Article  CAS  PubMed  Google Scholar 

  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Re KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91(1):227–236

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao YP, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Madler L, Cohen Y, Zink JI, Nel AE (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Liu X, Wang C, Jiang Y, Wang Y, Xiao X, Ho JC, Li J, Jiang C, Xiong Q, Liao L (2013) Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano 7(1):804–810

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the Korean Ministry of Food and Drug Safety (13182MFDS606 and 15182MFDS462).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Seob Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J., Kim, J., Seok, S.H. et al. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch Toxicol 90, 817–828 (2016). https://doi.org/10.1007/s00204-015-1493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1493-x

Keywords

Navigation