Skip to main content

Advertisement

Log in

Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and cleaning up the stressed environment without harming it. The industrial revolution was followed by the green revolution which fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environmental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics techniques reportedly used in environmental monitoring to tackle the pollution load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

adapted from Lloyd and Lovley (2001)

Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data associated with the work were mentioned in the manuscript.

References

  • Abbas M, Shah JA, Irfan M, Memon MY (2018) Remobilization phosphorus in wheat cultivars under induced phosphorus deficiency. J Plant Nutr 41:1–12

    Article  Google Scholar 

  • Abbaslou H, Bakhtiari S (2017) Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and Ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions. Pollution 3:471–486

    CAS  Google Scholar 

  • Abd El- Rahman SS, Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defense-related enzymes and phenolic compounds in lupine (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur J Plant Pathol 134:105–116

  • Abd El-Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physio Plant 36(2):343–354. https://doi.org/10.1007/s11738-013-1416-5

  • Abdallah RZ, Wegner CE, Liesack W (2019) Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol Biochem 132:131–142

    Article  CAS  Google Scholar 

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2021) Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubbles and macrobubbles. J Soil Sci Plant Nutr 21:389–403

    Article  CAS  Google Scholar 

  • Adams DG, Duggan PS, Jackson O (2012) Cyanobacterial symbioses. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer Science+Business Media B.V., Berlin, pp 593–647

    Chapter  Google Scholar 

  • Adeniji A, Okoh O, Okoh A (2019) Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River Estuary, South Africa and their health risk assessment. Arch Environ Con Tox 76:657–669

    Article  CAS  Google Scholar 

  • Ahemad M (2019) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian J Chem 12(7):1365–1377

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47(3):563–570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akladious SA, Mohamed HI (2017) Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress. Acta Biol Hungarica 68(1):101–114

    Article  CAS  Google Scholar 

  • Ali DM, Suresh A, Praveen Kumar R, Gunasekaran M, Thajuddin N (2011) Efficiency of textile dye decolorization by marine cyanobacterium, Oscillatoria formosa NTDM02. Afr J Basic Appl Sci 3:9–13

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  PubMed  PubMed Central  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam KA (2012) Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol J 28(2):149–155

    Article  CAS  Google Scholar 

  • Aly AA, Mohamed HI, Mansour MTM, Omar MR (2013) Suppression of powdery mildew on flax by foliar application of essential oils. J Phytopathol 161:376–381

    Article  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI (2017) Association of increase in some biochemical components with flax resistance to powdery mildew. Gesunde Pflanz 69(1):47–52

    Article  CAS  Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Fungi as bioremediators. Springer Berlin Heidelberg, pp 29–49

  • Anezaki K, Kannan N, Nakano T (2015) Polychlorinated biphenyl contamination of paints containing polycyclic-and Naphthol AS-type pigments. Environ Sci Pollut Res 22:14478–14488

    Article  CAS  Google Scholar 

  • Arora M, Saxena P, Abdin M, Varma A (2018) Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis 75:103–112

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Aswale PN, Ade AB (2009) Effect of pH on biodegradation of polythene by Serratia marcescens. Ecotech 1:152–153

  • Aubé J, Senin P, Bonin P, Pringault O, Jeziorski C, Bouchez O, Klopp C, Guyoneaud R, Goñi-Urriza M (2020) Meta-omics provides insights into the impact of hydrocarbon contamination on microbial mat functioning. Microb Ecol 80:286–295

    Article  PubMed  Google Scholar 

  • Awasthi MK, Ravindran B, Sarsaiya S, Chen H, Wainaina S, Singh E, Liu T, Kumar S, Pandey A, Singh L, Zhang Z (2020) Metagenomics for taxonomy profiling: tools and approaches. Bioengineered 11:356–374

    Article  Google Scholar 

  • Babalola OO, Glick BR (2012) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10:540–549

    Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajesh Kannan V (2010) High-density polyethylene (HDPE) degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211

    PubMed  CAS  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2018) Micro-remediation of metals: a new frontier in bioremediation. In: Hussain C (ed) Handbook of environmental materials management. Springer. https://doi.org/10.1007/978-3-319-58538-3_10-1, ISBN:978-3-319-58538-3

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2

    Article  Google Scholar 

  • Bastida F, Hernandez T, Garcia C (2014) Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J Proteomics 101:31–42

    Article  PubMed  CAS  Google Scholar 

  • Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernández T, von Bergen M, García C (2016) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteomics 135:162–169

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Kumar G, Chhabra S, Prasad R (2020) Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In: Verma JP, Macdonald C, Gupta VK, Podile AR (eds) New and future developments in microbial biotechnology and bioengineering: phytomicrobiome for sustainable agriculture. Elsevier, Amsterdam, pp 149–157

    Google Scholar 

  • Battaglia ML, Groover G, Thomason WE (2018) Harvesting and nutrient replacement costs associated with corn stover removal in virginia. Virginia Cooperative Extension Publication CSES-229NP; Virginia Tech, Blacksburg

    Google Scholar 

  • Beale DJ, Karpe AV, Ahmed W, Cook S, Morrison PD, Staley C, Palombo EA (2017) A community multi-omics approach towards the assessment of surface water quality in an urban river system. Int J Environ Res Public Health 14:E303. https://doi.org/10.3390/ijerph14030303

    Article  PubMed  CAS  Google Scholar 

  • Beauvais-Flück R, Slaveykova VI, Cosio C (2017) Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci Rep 7:8034

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat NA, Riar A, Ramesh A, Iqbal S, Sharma MP, Sharma SK, Bhullar GS (2017) Soil biological activity contributing to phosphorus availability in vertisols under long-term organic and conventional agricultural management. Front Plant Sci 8:15–23

    Article  Google Scholar 

  • Bilal T, Malik B, Hakeem KR (2018) Metagenomic analysis of uncultured microorganisms and their enzymatic attributes. J Microbiol Methods 155:65–69

    Article  PubMed  CAS  Google Scholar 

  • Blattner C (2020) Just transition for agriculture? A critical step in tackling climate change. J Agric Food Syst Commun Dev 9:1–6

    Article  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Bolognesi C, Merlo FD (2011) Pesticides: human health effects. In: Nriagu JO (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 438–453

    Chapter  Google Scholar 

  • Briceño G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeterior Biodegrad 73:1–7

    Article  Google Scholar 

  • Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13:317–335

    Article  PubMed  CAS  Google Scholar 

  • Callaghan AV (2013) Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr Opin Biotechnol 24:506–515

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas Espinosa MJ, Colina Blanco A, Schmidgall T, Atanasoff-Kardjalieff AK, Kappelmeyer U, Tischler D, Pieper DH, Heipieper HJ, Eberlein C (2020) Toward biorecycling: isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front Microbiol 11:404. https://doi.org/10.3389/fmicb.2020.00404

    Article  Google Scholar 

  • Cassan FD, Okon Y, Creus CM (2015) Handbook for Azospirillum. Springer, Switzerland. ISBN 978-3-319-06542-7

  • Chandran H, Meena M, Sharma K (2020) Microbial biodiversity and bioremediation assessment through omics approaches. Front Environ Chem 1:570326. https://doi.org/10.3389/fenvc.2020.570326

    Article  Google Scholar 

  • Chatterjee S, Roy B, Roy D, Banerjee R (2010) Enzyme-mediated biodegradation of heat treated commercial polyethylene by Staphylococcal species. Polym Degrad Stab 95:195–200

    Article  CAS  Google Scholar 

  • Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soil contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol Adv 33:745–755

    Article  PubMed  CAS  Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738

    Article  Google Scholar 

  • Cui Z, Cui L, Huang Y, Yan X, He S-PL (2012) Advances and application of microbial degradation in pesticides pollution remediation. Nanjing Nongye Daxue Xuebao 35(5):93–102

    CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Inter 2011:1–13

    Google Scholar 

  • Das D, Mawlong GT, Sarki YN, Singh AK, Chikkaputtaiah C, Boruah HPD (2020) Transcriptome analysis of crude oil degrading Pseudomonas aeruginosa strains for identification of potential genes involved in crude oil degradation. Gene 755:144909. https://doi.org/10.1016/j.gene.2020.144909

    Article  PubMed  CAS  Google Scholar 

  • De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P (2015) Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol 49(16):9629–9638

    Article  PubMed  Google Scholar 

  • Deng ZJ, Cao LX, Zhang RD, Wang WF, Shi Y, Tan HM, Wang ZY, Cao LX (2014) Enhanced phytoremediation of multi-metal contaminated soils by interspecific fusion between the protoplasts of endophytic Mucor sp. CBRF59 and Fusarium sp. CBRF14. Soil Biol Biochem 77:31–40

    Article  CAS  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry based metabolomics. Mass Spectrom Rev 26:51–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267

    Article  Google Scholar 

  • Divya B, Deepak KM (2011) Plant-microbe interaction with enhanced bioremediation. Res J Biotechnol 6:72–79

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Megahed B, Gamal M, Safwat G (2018) Evaluation of some chemical constituents, antioxidant, antibacterial and anticancer activities of Beta vulgaris L. root. Frese Environ Bull 27:6369–6378

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Elmelegy AA, Eldesoky SE, Safwat G (2019a) Phytochemical screening, antimicrobial, antioxidant, anticancer activities and nutritional values of cactus (Opuntia ficus Indicia) pulp and peel. Frese Environ Bull 28(2A):1534–1551

    Google Scholar 

  • El-Beltagi HS, Mohamed HI, Safwat G, Gamal M, Megahed B (2019b) Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanz 71:113–122

    Article  CAS  Google Scholar 

  • El-Beltagi HS, Sofy MR, Aldaej MI, Mohamed HI (2020) Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 12(11):4732

    Article  CAS  Google Scholar 

  • El-Mahdy OM, Mohamed HI, Mogazy AM (2021) Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd and Pb contaminated soil and their physiological effects on Vicia faba L. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15382-4

    Article  Google Scholar 

  • Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108

    Article  PubMed  CAS  Google Scholar 

  • Flores FJD, Silva LR, Rivera LP, Marcos-Garcıa M, Garcıa-Fraile P, Martınez-Molina E, Mateos PF, Velazquez E, Andrade P, Rivas R (2015) Plant probiotics as a tool to produce highly functional fruits: the case of phyllobacterium and vitamin C in strawberries. PLoS ONE 10:e0122281

    Article  Google Scholar 

  • Fonte SJ, Nesper M, Hegglin D, Velásquez JE, Ramirez B, Rao IM, Bernasconi SM, Bünemann EK, Frossard E, Oberson A (2014) Pasture degradationimpacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biol Biochem 68:150–157

    Article  CAS  Google Scholar 

  • Frazzon J, Schrank IS (1998) Sequencing and complementation analysis of the nifUSV genes from Azospirillum brasilense. FEMS Microbiol Lett 159:151–158

    Article  PubMed  CAS  Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:1. https://doi.org/10.1186/s13568-015-0171-y

    Article  CAS  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38:311–400

    Article  CAS  Google Scholar 

  • Gaytán I, Sánchez-Reyes A, Burelo M, Vargas-Suárez M, Liachko I, Press M, Sullivan S, Cruz-Gómez MJ, Loza-Tavera H (2020) Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and its biodegradative potential revealed by proximity ligation-based metagenomic analysis. Front Microbiol 10:2986. https://doi.org/10.3389/fmicb.2019.02986

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillis M, Kersters K, Hoste LB, Janssens LD, Kroppensted LRM, Stephan MP, Teixeira KRS, Dobereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Evol Microbiol 39:361–364

    Google Scholar 

  • Gołebiewski M, Tretyn A (2020) Generating amplicon reads for microbial community assessment with next generation sequencing. J Appl Microbiol 128:330–354

    Article  PubMed  Google Scholar 

  • Gupta PK (2019) Concept and applications of veterinary toxicology: an interactive guide. Springer Cham. https://doi.org/10.1007/978-3-030-22250-5

  • Gupta VVSR, Germida JJ (2015) Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol Biochem 80:A3–A9

    Article  CAS  Google Scholar 

  • Gupta K, Biswas R, Sarkar A (2020) Advancement of omics: prospects for bioremediation of contaminated soils. In: Shah M (ed) Microbial bioremediation & biodegradation. Springer, Singapore, pp 113–142

    Chapter  Google Scholar 

  • Gutierrez DB, Gant-Branum RL, Romer CE, Farrow MA, Allen JL, Dahal N, Nei YW, Codreanu SG, Jordan AT, Palmer LD, Sherrod SD, McLean JA, Skaar EP, Norris JL, Caprioli RM (2018) An integrated, high-throughput strategy for “multi-omic” systems level analysis. J Proteome Res 17:3396–3408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D (2018) The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol 44:212–229

    Article  PubMed  CAS  Google Scholar 

  • Han D, Gao P, Li R, Tan P, Xie J, Zhang R, Li J (2020) Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing. J Adv Res 26:111–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hart EH, Creevey CJ, Hitch T, Kingston-Smith AH (2018) Metaproteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci Rep 8:10504. https://doi.org/10.1038/s41598-018-28827-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  PubMed  Google Scholar 

  • Hodkinson BP, Grice EA (2015) Next-generation sequencing: a review of technologies and tools for wound microbiome research. Adv Wound Care 4:50–58

    Article  Google Scholar 

  • Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou L, Wu Q, Gu Q, Zhou Q, Zhang J (2018) Community structure analysis and biodegradation potential of aniline-degrading bacteria in biofilters. Curr Microbiol 75:918–924

    Article  PubMed  CAS  Google Scholar 

  • Howard GT, Norton WN, Burks T (2012) Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethane enzyme. Biodegradation 23:561–573

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Wei Z, Weidner S, Friman VP, Xu YC, Shen QR, Jousset A (2017) Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol Biochem 113:122–129

    Article  CAS  Google Scholar 

  • Iglesias M, Marguí E, Camps F, Hidalgo M (2018) Extractability and crop transfer of potentially toxic elements from Mediterranean agricultural soils following long-term sewage sludge applications as a fertilizer replacement to barley and maize crops. Waste Manag 75:312–318

    Article  PubMed  CAS  Google Scholar 

  • Inui H, Hirota M, Goto J, Yoshihara R, Kodama N, Matsui T, Yamazaki K, Eun H (2015) Zinc finger protein genes from Cucurbita pepo are promising tools for conferring non-Cucurbitaceae plants with ability to accumulate persistent organic pollutants. Chemosphere 123:48–54

    Article  PubMed  CAS  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70

    Article  CAS  Google Scholar 

  • Jaga P, Singh V (2010) Effect of biofertilizer, nitrogen and sulphur on sorghum-mustard cropping system. In: Proceedings of National Seminar on Soil Security for Sustainable Agriculture held at College of Agriculture, Nagpur. M.S. 27–28 Feb 2010

  • Janssen DB, Dinkla IJT, Poelarends GJ, Terpstra P (2005) Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7:1868–1882

    Article  PubMed  CAS  Google Scholar 

  • Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica 2016:1598325

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayakumar S, Muralidharan S, Dhananjayan V (2019) Levels of organochlorine pesticide residues in fresh water fishes of three bird sanctuaries in Tamil Nadu, India. Environ Sci Pollut Res Int 26(2):1983–1993

    Article  Google Scholar 

  • Jayaraman S, Thangaiyan S, Mani K, Nagarajan K, Muthukalingan K (2019) Identification of a novel gene through the metagenomic approach to degrade the targeted pollutant. Microb Biodegrad Xeno Comp 30:204

    Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2018) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. In: Gautam A, Pathak C (eds) Metallic contamination and its Toxicity. Daya Publishing House, A Division of Astral International Pvt. Ltd, New Delhi, pp 231–247, ISBN:9789351248880

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Uni Sci 8:192–207

    Article  CAS  Google Scholar 

  • Kafil M, Boroomand Nasab S, Moazed H, Bhatnagar A (2019) Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. Int J Phytoremediat 21:92–100

    Article  CAS  Google Scholar 

  • Kanade SN, Ade AB, Khilare VC (2012) Malathion degradation by Azospirillum lipoferum Beijerinck. Sci Res Report 2(1):94–103

    Google Scholar 

  • Keri S, Bethan S, Adam GH (2008) Tire rubber recycling and bioremediation. Biorem J 12:1–11

    Article  Google Scholar 

  • Kim HJ, Ishidou E, Kitagawa E, Momose Y, Iwahashi H (2004) A yeast DNA microarray for the evaluation of toxicity in environmental water containing burned ash. Environ Monit Assess 92:253–272

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Toya Y, Shimizu H (2019) 13C-Metabolic flux analysis reveals effect of phenol on central carbon metabolism in Escherichia coli. Front Microbiol 10:1010. https://doi.org/10.3389/fmicb.2019.01010

    Article  PubMed  PubMed Central  Google Scholar 

  • Koshlaf E, Shahsavari E, Haleyur N, Osborn AM, Ball AS (2019) Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon contaminated landfill soil during bioremediation. Geoderma 338:216–225

    Article  CAS  Google Scholar 

  • Kotoky R, Rajkumari J, Pandey P (2018) The rhizosphere microbiome: significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. J Environ Manag 217:858–870

    Article  CAS  Google Scholar 

  • Kou S, Vincent G, Gonzalez E, Pitre FE, Labrecque M, Brereton NJB (2018) The response of a 16S ribosomal RNA gene fragment amplified community to lead, zinc, and copper pollution in a Shanghai field trial. Front Microbiol 9:366. https://doi.org/10.3389/fmicb.2018.00366

    Article  PubMed  PubMed Central  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020) Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487

    Article  Google Scholar 

  • Krishnaraj PU, Dahale S (2014) Mineral phosphate solubilization: concepts and prospects in sustainable agriculture. Proc Ind Natl Sci Acad 80:389–405

    Article  Google Scholar 

  • Krolicka A, Boccadoro C, Nilsen MM, Baussant T (2017) Capturing early changes in the marine bacterial community as a result of crude oil pollution in a Mesocosm experiment. Microbes Environ 2:358–366

    Article  Google Scholar 

  • Krumsiek J, Mittelstrass K, Do KT, Stückler F, Ried J, Adamski J, Peters A, Illig T, Kronenberg F, Friedrich N, Nauck M, Pietzner M, Mook-Kanamori DO, Suhre K, Gieger C, Grallert H, Theis FJ, Kastenmüller G (2015) Gender-specific pathway differences in the human serum metabolome. Metabolomics 11:1815–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kukurugya MA, Mendonca CM, Solhtalab M, Wilkes RA, Thannhauser TW, Aristilde L (2019) Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in Pseudomonas putida. J Biol Chem 294:8464–8479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Lai L, Kumar P, Feliciano YMV, Battaglia ML, Hong CO, Owens VN, Fike J, Farris R, Galbraith J (2019) Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron J 111:1046–1059

    Article  CAS  Google Scholar 

  • Lade H, Govindwar S, Paul D (2015) Low-cost biodegradation and detoxification of textile azo dye CI Reactive Blue 172 by Providencia rettgeri strain HSL1. J Chem

  • Lalitha S (2017) Plant growth–promoting microbes: a boon for sustainable agriculture. In: Dhanarajan A (ed) Sustainable agriculture towards Food Security. Springer Singapore, Singapore, pp 125–158

    Chapter  Google Scholar 

  • Latif HH, Mohamed HI (2016) Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. South Afr J Bot 106:221–231

    Article  CAS  Google Scholar 

  • Leifheit E, Veresoglou S, Lehmann A, Morris EK, Rillig M (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-ameta-analysis. Plant Soil 374(1–2):523–537

    Article  CAS  Google Scholar 

  • Lenart A (2012) Occurance Characteristics and genetic diversity of Azotobacter chroococcum in various soils of Southern Poland. Pol J Environ Stud 21(2):415–424

    Google Scholar 

  • Li YY, Zeng JH, Wang SZ, Lin QQ, Ruan DS, Chi HC, Zheng MY, Chao YQ, Qiu RL, Yang YH (2020) Effects of cadmium-resistant plant growth-promoting rhizobacteria and Funneliformis mosseae on the cadmium tolerance of tomato (Lycopersicon esculentum L.). Int J Phytoremediat 22:451–458

    Article  CAS  Google Scholar 

  • Liu S, Yang B, Liang Y, Xiao Y, Fang J (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Pollut Res 27:16069–16085

    Article  CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  PubMed  CAS  Google Scholar 

  • Lubbers IM, van Groenigen KJ, Fonte SJ, Six J, Brussaard L, van Groenigen JW (2013) Greenhouse-gas emissions from soils increased by earthworms. Nat Clim Change 3(3):187–194

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, OliveiraR S, Zhang C, Freitas H (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379:120813

    Article  PubMed  CAS  Google Scholar 

  • Madhuban G, Debashis D, Das SK (2011) Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9. Pestic Res J 23(1):36–40

    Google Scholar 

  • Magalhaes JV, de Sousa SM, Guimaraes CT, Kochian LV (2017) The role of root morphology and architecture in phosphorus acquisition: physiological, genetic, and molecular basis A2—Hossain, Mohammad Anwar. In: Kamiya T et al (eds) Plant macronutrient use efficiency. Academic Press, pp 123–147

  • Maghraby DM, Hassan J (2018) Heavy metals Bioaccumulation by the green alga Cladophora herpestica in Lake Mariut, Alexandria, Egypt. J Pollut 1:1

    Google Scholar 

  • Mahdi SS, Hassan G, Samoon S, Rather H, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytol 2:42–54

    Google Scholar 

  • Maheshwari DK, Saraf M, Aeron A (2012) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 127–165

    Book  Google Scholar 

  • Malimas T, Thi Lan VuH, Muramatsu Y, Yukphan P, Tanasupawat S, Yamada Y (2017) Systematics of acetic acid bacteria. Acetic acid bacteria. Food biology series. CRC Press, Boca Raton, pp 3–43

    Chapter  Google Scholar 

  • Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132. https://doi.org/10.3389/fmicb.2018.01132

    Article  PubMed  PubMed Central  Google Scholar 

  • Marks BB, Megías M, Ollero FJ, Nogueira MA, Araujo RS, Hungria M (2015) Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici CIAT 899 enriched on lipo-chitooligossacharides (LCOs). AMB Express 5:71. https://doi.org/10.1186/s13568-015-0154-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matavuly MN, Molitoris HP (2009) Marine fungi degraders of poly-3-hydroxyalkanoate based plastic materials. Proc Nat Sci Matica Srpska Novi Sad 116:253–265

    Article  CAS  Google Scholar 

  • Mattarozzi M, Manfredi M, Montanini B, Gosetti F, Sanangelantoni AM, Marengo E, Careri M, Visioli G (2017) A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 409:2327–2339

    Article  PubMed  CAS  Google Scholar 

  • Mauchline TH, Malone JG (2017) Life in earth—the root microbiome to the rescue? Curr Opin Mirobiol 37:23–28

    Article  Google Scholar 

  • Medina A, Roldán A, Azcón R (2010) The effectiveness of arbuscular mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J Environ Manag 91(12):2547–2553

    Article  CAS  Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western Dry Zone of India. Am J Exp Agric 7(3):170–177

    CAS  Google Scholar 

  • Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay RS (2019) Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5:e02951. https://doi.org/10.1016/j.heliyon.2019.e02952

    Article  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020a) Impact of agrochemicals on soil microbiota and management: a review. Land 9(34):1–22

    Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  Google Scholar 

  • Mendes S, Robalo MP, Martins LO (2015) Bacterial enzymes and multi-enzymatic systems for cleaning-up dyes from the environment. In: Microbial degradation of synthetic dyes in wastewaters. Springer International Publishing, pp 27–55

  • Mendoza JC, Perea Y, Salvador JA (2011) Bacterial biodegradation of permetrina and cipermetrina pesticides in a culture assemblage. Adv Cienc Ing 2(3):45–55

    CAS  Google Scholar 

  • Meneghine AK, Nielsen S, Varani AM, Thomas T, Alves LM (2017) Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization. PLoS ONE 12:e0190178

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller R, Jastrow J (2000) Mycorrhizal fungi influence soil structure. Arbuscular mycorrhizas: physiology and function. Springer, Berlin, pp 3–18

    Book  Google Scholar 

  • Mir S, Asghar B, Khan AK, Rashid R, Shaikh A, Khan RA, Murtaza G (2017) The effects of nanoclay on thermal, mechanical and rheological properties of LLDPE/chitosan blend. J Polym Eng 37:143–149

    Article  CAS  Google Scholar 

  • Mohamed HI (2011) Molecular and biochemical studies on the effect of gamma rays on lead toxicity in cowpea (Vigna sinensis) plants. Biol Trace Element Res 144(1–3):1205–1218

    Article  CAS  Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50(2):263–272

    Article  CAS  Google Scholar 

  • Mohamed HI, Aly AA, Mansour MTM, El-Samawaty AMA (2012) Association of oxidative stress components with resistance to flax powdery mildew. Trop Plant Pathol 37(6):386–392

    Article  Google Scholar 

  • Mohamed HI, Elsherbiny EA, Abdelhamid MT (2016a) Physiological and biochemical responses of Vicia faba Plants to foliar application of zinc and iron. Gesunde Pflanzen 68(4):201–212

    Article  CAS  Google Scholar 

  • Mohamed HI, Latif HH, Hanafy RS (2016b) Influence of nitric oxide application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of Vicia faba plant grown under arsenic stress. Gesunde Pflanzen 68(2):99–107

    Article  CAS  Google Scholar 

  • Mohamed HI, Akladious SA, El-Beltagi HS (2018a) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Frese Environ Bull 27(10):7054–7065

    CAS  Google Scholar 

  • Mohamed HI, El-Beltagi HS, Aly AA, Latif HH (2018b) The role of systemic and non systemic fungicides on the physiological and biochemical parameters in Gossypium hirsutum plant, implications for defense responses. Frese Environ Bull 27(12):8585–8593

    CAS  Google Scholar 

  • Mohd S, Shukla J, Kushwaha AS, Mandrah K, Shankar J, Arjaria N, Saxena PN, Narayan R, Roy SK, Kumar M (2017) Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Front Microbiol 8:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT, Datta R (2017) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS ONE 12:e0180663

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Palit D (2019) Effective role of microorganism in waste management and environmental sustainability. In: Jhariya et al (eds) Sustainable agriculture, forest and environmental management. Springer Nature Singapore Pte Ltd, pp 487–508. https://doi.org/10.1007/978-981-13-6830-1_14

  • Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci USA 104(33):13268–13272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moustafa-Farag M, Mohamed HI, Mahmoud A, Elkelish A, Misra AN, Guy KM, Kamran M, Ai S, Zhang M (2020) Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants 9:724. https://doi.org/10.3390/plants9060724

    Article  PubMed Central  CAS  Google Scholar 

  • Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81:2173–2181

  • Muhamad WNAW, Othman R, Shaharuddin RI, Irani MS (2015) Microorganism as plastic biodegradation agent towards sustainable environment. Adv Environ Biol 9:8–13

    Google Scholar 

  • Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. Plant microbes symbiosis: applied facets. Springer India, pp 1–36

  • Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, Shafiq F, Kotol PF, Bouslimani A, Melnik AV, Latif H, Kim JN, Lockhart A, Artis K, David G, Taylor P, Streib J, Dorrestein PC, Grier A, Gill SR, Zengler K, Hata TR, Leung DYM, Gallo RL (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Trans Med 9:eaah4680

    Article  Google Scholar 

  • Nguyen TA, Fu CC, Juang RS (2016) Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. J Environ Manag 182:265–271

    Article  CAS  Google Scholar 

  • Nie Z, Liu G, Liu W, Zhang B, Zheng M (2012) Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China. Atmos Environ 57:109–115

    Article  CAS  Google Scholar 

  • Nikolic N, Kostic L, Djordjevic A, Nikolic M (2011) Phosphorus deficiency is the major limiting factor for wheat on alluvium polluted by the copper mine pyrite tailings: a black box approach. Plant Soil 339:485–498

    Article  CAS  Google Scholar 

  • Nwachukwu S, Obidi O, Odocha C (2010) Occurrence and recalcitrance of polyethylene bag waste in Nigerian soils. Afr J Biotechnol 9:6096–6104

    Google Scholar 

  • Nyakundi WO, Magoma G, Ochora J, Nyende AB (2011) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley. J Appl Technol Environ Sanit 1(2):107–124

    CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12(4):421–444

    Article  CAS  Google Scholar 

  • Ogilvie LA, Hirsch PR (2012) Microbial ecological theory: current perspectives. Caister Academic Press, Norwich

    Google Scholar 

  • Okere UV, Semple KT (2012) Biodegradation of PAHs in ‘pristine’ soils from different climatic regions. J Bioremed Biodegrad S1:006. https://doi.org/10.4172/2155-6199.S1-006

    Article  Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Ortega SN, Nitschke M, Mouad AM (2011) Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegradation 22:43–50

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Hernandez ML, Sanchez-Salinas E, Dantan-Gonzalez E, Castrejon-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegradation-life Sci 251–287

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Pal S, Roy A, Kazy SK (2019) Exploring microbial diversity and function in petroleum hydrocarbon associated environments through Omics approaches. Microbial diversity in the genomicera. Academic Press, Cambridge, pp 171–194

    Chapter  Google Scholar 

  • Parween T, Bhandari P, Jan S, Mahmooduzzafar, Fatma T, Raza SK (2017) Role of bioinoculants as plant growth-promoting microbes for sustainable agriculture. In: Meena VS et al (eds) Agriculturally important microbes for sustainable agriculture. Springer Nature Singapore Pte Ltd., pp 183–206

  • Pedraza RO (2016) Acetic acid bacteria as plant growth promoters. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer Japan, Tokyo, pp 101–120

    Google Scholar 

  • Perroud B, Bandhari SK, Elmerich C (1985) The nifHDK operon of Azospirillum brasilense Sp7. In: Klingmuller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 10–19

    Chapter  Google Scholar 

  • Petrucci RH, Harwood WS, Herring FG (2002) General chemistry, 8th edn. Prentice-Hall, pp 1025–1026

  • Pinto AP, Serrano C, Pires T (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435–436:402–410

    Article  PubMed  Google Scholar 

  • Placido J, Chanaga X, Ortiz-Monsalve S, Yepes M, Mora A (2016) Degradation and detoxification of synthetic dyes and textile industry effluents by newly isolated Leptosphaerulina sp. from Colombia. Bioresour Bioprocess 3:6. https://doi.org/10.1186/s40643-016-0084-x

    Article  Google Scholar 

  • Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360:987–992

    Article  PubMed  CAS  Google Scholar 

  • Prakash O, Sharma R, Singh P, Yadav A (2016) Strategies for taxonomical characterization of agriculturally important microorganisms. Microbial inoculants in sustainable agricultural productivity. Springer, pp 85–101

  • Priyanka N, Archana T (2011) Biodegradability of polythene and plastic by the help of microorganism: assay for brighter future. J Environ Anal Toxicol 1:111. https://doi.org/10.4172/2161-0525.10000111

    Article  Google Scholar 

  • Prodhan MA, Finnegan PM, Lambers H (2019) How does evolution in phosphorus-impoverished landscapes impact plant nitrogen and sulfur assimilation? Trends Plant Sci 24:69–82

    Article  PubMed  CAS  Google Scholar 

  • Puglia D, Pezzolla D, Gigliotti G, Torre L, Bartucca ML, Del Buono D (2021) The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability 13:2710. https://doi.org/10.3390/su13052710

    Article  CAS  Google Scholar 

  • Rae BD, Long BM, Whitehead LF, Forster B, Badger MR, Price GD (2013) Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation. J Mol Microbiol Biotechnol 23:300–307

    PubMed  CAS  Google Scholar 

  • Rai PK, Kim KH, Lee SS, Lee JH (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858

    Article  PubMed  CAS  Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2018) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry: adaptation mitigation and livelihood security. New India Publishing Agency (NIPA), New Delhi, pp 1–19, ISBN:9789 386546067

  • Rashid M, Stingl U (2015) Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnol Adv 33:1755–1773

    Article  PubMed  CAS  Google Scholar 

  • Rashid MI, de Goede RG, Nunez GAC, Brussaard L, Lantinga EA (2014a) Soil pH and earthworms affect herbage nitrogen recovery from solid cattle manurein production grassland. Soil Biol Biochem 68:1–8

    Article  CAS  Google Scholar 

  • Rashid MI, de Goede RGM, Brussaard L, Bloem J, Lantinga EA (2014b) Production-ecological modelling explains the difference between potential soil N mineralization and actual herbage N uptake. Appl Soil Ecol 84:83–92

    Article  Google Scholar 

  • Rathore SS, Shekhawat K, Dass A, Kandpal BK, Singh VK (2019) Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proc Natl Acad Sci India Sect B Biol Sci 89(2):419–427

    Article  CAS  Google Scholar 

  • Roume H, Heintz-Buschart A, Muller EEL, May P, Satagopam VP, Laczny CC, Narayanasamy S, Lebrun LA, Hoopmann MR, Schupp JM, Gillece JD, Hicks ND, Engelthaler DM, Sauter T, Keim PS, Moritz RL, Wilmes P (2015) Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. NPJ Biofilms Microb 1:15007. https://doi.org/10.1038/npjbiofilms.2015.7

    Article  CAS  Google Scholar 

  • Saadoun MK (2015) Impact of oil spills on marine life. In: Larramendy ML, Soloneski S (eds) Emerging pollutants in the environment—current and further implications. Intech Open. https://doi.org/10.5772/60455

  • Sabra M, Aboulnasr A, Franken P, Perreca E, Wright LP, Camehl I (2018) Beneficial root endophytic fungi increase growth and quality parameters of sweet basil in heavy metal contaminated soil. Front Plant Sci 9:1726

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white- rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27(8):1747–1754

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria-as potential biofertilizer. CIB Tech J Microbiol 1:20–26

    Google Scholar 

  • Sakshi, Haritash AK (2020) A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 202:2033–2058

    Article  PubMed  CAS  Google Scholar 

  • Salhia B (2013) The effect of Azotobacter chrococcumas nitrogen biofertilizer on the growth and yield of Cucumis sativus. Deanery of Higher Education Faculty of Science, Master of Biological Sciences, Botany: The Islamic University Gaza

  • Sanders JL, Murphy LS, Anne Noble RJ, Melgar JP (2012) Improving phosphorus use efficiency with polymer technology. Proc Eng 46:178–184

    Article  CAS  Google Scholar 

  • Sato Y, Hori T, Koike H, Navarro RR, Ogata A, Habe H (2019) Transcriptome analysis of activated sludge microbiomes reveals an unexpected role of minority nitrifiers in carbon metabolism. Commun Biol 2:179. https://doi.org/10.1038/s42003-019-0418-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Seeger M, Cámara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183:3548–3555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seeger M, Hernández M, Méndez V, Ponce B, Córdova M, González M (2010) Bacterial degradation and bioremediation of chlorinated herbicides and biphenyls. J Soil Sci Plant Nutr 10(3):320–332

    Article  Google Scholar 

  • Seneviratne G, Tennakoon NS, Weerasekara MLMAW, Nandasena KA (2006) Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr Sci 90:20–22

    CAS  Google Scholar 

  • Senthilkumar S, Perumalsamy M, Prabhu HJ (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18:845–853

    Article  Google Scholar 

  • Shah GM, Rashid MI, Shah GA, Groot JCJ, Lantinga EA (2013) Mineralization and herbage recovery of animal manure nitrogen after application to various soil types. Plant Soil 365(1–2):69–79

    Article  CAS  Google Scholar 

  • Shaheen S, Sundari K (2013) Exploring the applicability of PGPR to remediate residual organophosphate and carbamate pesticides used in agriculture fields. Int J Agric Food Sci Technol 4(947):954

    Google Scholar 

  • Sharma S, Shah KW (2005) Generation and disposal of solid waste in Hoshangabad. In: Proceedings of the second International Congress of chemistry and environment. Indore, India, pp 749–751

  • Sharma S, Gupta R, Dugar G, Srivastava AK (2012) Impact of application of biofertilizers on soil structure and resident microbial community structure and function. In: Maheswari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Heidelberg, pp 65–77

    Chapter  Google Scholar 

  • Sharma P, Pandey AK, Udayan A, Kumar S (2021) Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresource Technol 326:124750

    Article  CAS  Google Scholar 

  • Shi YN, Xie HR, Cao LX, Zhang RD, Xu ZC, Wang ZY, Deng ZJ (2017) Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ Sci Pollut Res 24:417–426

    Article  CAS  Google Scholar 

  • Silva CC, Hayden H, Sawbridge T, Mele P, De Paula SO, Silva LCF, Vidigal PMP, Vicentini R, Sousa MP, Torres APR, Santiago VMJ, Oliveira VM (2013) Identification of genes and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater. PLoS ONE 8:e61811. https://doi.org/10.1371/journal.pone.0061811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh L, Singh VP (2010) Microbial degradation and decolorization of dyes in semi-solid medium by the fungus–Trichoderma harzianum. Environ We Int J Sci Tech 5:147–153

    Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2014) Potential of biofertilizers in crop production in Indian agriculture. Am J Plant Nutr Fertil Technol 4:33–40

    Article  Google Scholar 

  • Singh G, Pankaj U, Chand S, Verma RK (2019) Arbuscular mycorrhizal fungi-assisted phytoextraction of toxic metals by Zea mays L. from tannery sludge. Soil Sediment Contam Int J 28:729–746

    Article  CAS  Google Scholar 

  • Sivasakthi S, Saranraj P, Sivasakthivelan P (2017) Biological nitrogen fixation by Azotobacter sp. A review. Indo-Asian J Multidisc Res 3(5):1274–1284

    Google Scholar 

  • Soccol CR, Vandenberghe LPDS, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Tech Biotechnol 48:413–434

    CAS  Google Scholar 

  • Sofy MR, Seleiman MF, Alhammad BA, Alharbi BM, Mohamed HI (2020a) Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy 10(5):699

    Article  CAS  Google Scholar 

  • Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, Hmed AA, El-Dougdoug NK (2020b) Improving regulation of enzymatic and nonenzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules 25:2341. https://doi.org/10.3390/molecules25102341

    Article  PubMed Central  CAS  Google Scholar 

  • Sofy MR, Mohamed HI, Dawood MFA, Abu-Elsaoud AM, Soliman MH (2021a) Integrated usage of arbuscular mycorrhizal fungi and chicken waste biochar as economic potential tools to ameliorate antioxidant activity, osmolyte accumulation and salt endogenous hormone-stressed spinach plants. Arch Agronomy Soil Sci. https://doi.org/10.1080/03650340.2021.1949709

    Article  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey E, Mohamed HI, El-Dougdoug NK (2021b) Molecular characterization of the alfalfa mosaic virus infecting solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 10:459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sofy MR, Aboseidah AA, Heneidak SA, Ahmed HR (2021c) ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13585-3

    Article  Google Scholar 

  • Song D, Hayek S, Ibrahim S (2012) Recent application of probiotics in food and agricultural science. In: Rigobelo EC (ed) Immunology and microbiology “Probiotics.” INTECH Publisher, pp 123–141

  • Sudha M, Saranya A, Selvakumar G, Sivakumar N (2014) Microbial degradation of azo dyes: a review. Int J Curr Microbiol Appl Sci 3:670–690

  • Szewczyk R, Soboń A, Słaba M, Długoński J (2015) Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J Hazard Mater 291:52–64

    Article  PubMed  CAS  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with the descriptions of a new genus, Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  • Thomas L, Singh I (2019) Microbial biofertilizers: types and applications. In: Giri B et al (eds) Biofertilizers for sustainable agriculture and environment. Springer Nature Switzerland AG

  • Thomas LV, Suzuki K, Zhao J (2015) Probiotics: a proactive approach to health. A symposium report. Br J Nutr 114:S1–S15

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Tingting L, Kunming D, Miao L et al (2012) Isolation, identification and biodegradation characteristics of a bacterial strain able to degrade bifenthrin. Nongye Huanjing KexueXuebao 31(6):1147–1152

  • Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Iustman LJ, Lopez NI (2018) Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. J Ind Microbiol Biotechnol 45:15–23

    Article  PubMed  CAS  Google Scholar 

  • Turner BL, Brenes-Arguedas T, Condit R (2018) Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555:367–370

    Article  PubMed  CAS  Google Scholar 

  • Udeigwe TK, Teboh JM, Eze PN (2015) Implications of leading crop production practices on environmental quality and human health. J Environ Manag 151:267–279

    Article  CAS  Google Scholar 

  • Urbanek AK, Rymowicz W, Strzelecki MC, Kociuba W, Franczak L, Mironczuk AM (2017) Isolation and characterization of Arctic microorganisms decomposing bioplastics. AMB Express 7(1):148

    Article  PubMed  PubMed Central  Google Scholar 

  • Utturkar SM, Bollmann A, Brzoska RM, Klingeman DM, Epstein SE, Palumbo AV, Brown SD (2013) Draft genome sequence for Caulobacter sp. strain OR37, a bacterium tolerant to heavy metals. Genome Announc 1:e00322-e1313

    PubMed  PubMed Central  Google Scholar 

  • Utturkar SM, Cude WN, Robeson MS, Yang ZK, Klingeman DM, Land ML, Allman SL, Lu TY, Brown SD, Schadt CW, Podar M (2016) Enrichment of root endophytic bacteria from populus deltoides and single-cell-genomics analysis. Appl Environ Microbiol 82:5698–5708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkataraman K (2012) The chemistry of synthetic dyes, vol 4. Academic Press, New York, pp 409–464

    Google Scholar 

  • Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1555. https://doi.org/10.3389/fmicb.2015.01555

    Article  PubMed Central  Google Scholar 

  • Vijayakumar S, Manoharan C (2012) Treatment of dye industry effluent using free and immobilized cyanobacteria. J Bioremed Biodeg 3:165

    Article  Google Scholar 

  • Villiers F, Hugouvieux V, Leonhardt N, Vavasseur A, Junot C, Vandenbrouck Y, Bourguignon J (2012) Exploring the plant response to cadmium exposure by transcriptomic, proteomic and metabolomic approaches: potentiality of high-throughput methods, promises of integrative biology. Metal toxicity in plants: perception, signaling and remediation. Springer, Berlin, pp 119–142

    Chapter  Google Scholar 

  • Walpola BC, Yoon M (2012) Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review. Afr J Microbiol Res 6:6600–6605

    CAS  Google Scholar 

  • Wanapaisan P, Laothamteep N, Vejarano F, Chakraborty J, Shintani M, Muangchinda C, Morita T, Suzuki-Minakuchi C, Inoue K, Nojiri H, Pinyakong O (2018) Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J Hazard Mater 342:561–570

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Xie S, Hu R (2013) Bioaugmentation with Arthrobacter sp. strain DAT1 for remediation of heavily atrazine-contaminated soil. Int Biodeterior Biodegrad 77:63–67

    Article  CAS  Google Scholar 

  • Wang X, Cheng X, Sun D, Ren Y, Xu G (2014) Fate and transformation of naphthylaminesulfonic azo dye Reactive Black 5 during wastewater treatment process. Environ Sci Pollut Res 21:5713–5723

    Article  CAS  Google Scholar 

  • Wang DZ, Kong LF, Li YY, Xie ZX (2016) Environmental microbial community proteomics: status, challenges and perspectives. Int J Mol Sci 17:1275. https://doi.org/10.3390/ijms17081275

    Article  PubMed Central  Google Scholar 

  • Wang S, Pan S, Shah GM, Zhang Z, Yang L, Yang S (2018) Enhancement in arsenic remediation by maize (Zea mays L.) using EDTA in combination with arbuscular mycorrhizal fungi. Appl Ecol Environ Res 16:5987–5999

    Article  Google Scholar 

  • Wani SA, Chand S, Wani MA, Ramzan M, Hakeem KR (2016) Azotobacter chroococcum—a potential biofertilizer in agriculture: an overview. Soil science: agricultural and environmental prospectives. Springer, Berlin/Heidelberg, pp 333–348

    Chapter  Google Scholar 

  • Wei K, Yin H, Peng H, Liu Z, Lu G, Dang Z (2017) Characteristics and proteomic analysis of pyrene degradation by Brevibacillus brevis in liquid medium. Chemosphere 178:80–87

    Article  PubMed  CAS  Google Scholar 

  • Wright RJ, Bosch R, Gibson MI, Christie-Oleza JA (2020) Plasticizer degradation by marine bacterial isolates: a proteogenomic and metabolomic characterization. Environ Sci Technol 54:2244–2256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu JT, Wang L, Zhao L, Huang XC, Ma F (2020) Arbuscular mycorrhizal fungi effect growth and photosynthesis of Phragmites australis (Cav.) Trin ex. Steudel under copper stress. Plant Biol 22:62–69

    Article  PubMed  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Yadav J, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Article  Google Scholar 

  • Yamada Y (2016) Systematics of acetic acid bacteria. In: Kazunobu Matsushita HT, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer, Tokyo, pp 1–50

    Google Scholar 

  • Yang HY, Jia RB, Chen B, Li L (2014) Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ Sci Pollut Res 21:11086–11093

    Article  CAS  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS ONE 7:e30058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8:344

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Li X, Liu Y, Zhang D, Zhang S, Luo X (2012) Biodegradation of cypermethrin by Rhodopseudomonas palustris GJ-22 isolated from activated sludge. Fresenius Environ Bull A 21(2):397–405

    CAS  Google Scholar 

  • Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44:2240–2254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhan FD, Li B, Jiang M, Yue XR, He YM, Xia YS, Wang YS (2018) Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res 25:24338–24347

    Article  CAS  Google Scholar 

  • Zhang Y, Meng D, Wang Z, Guo H, Wang Y, Wang X, Dong X (2012) Oxidative stress response in atrazine-degrading bacteria exposed to atrazine. J Hazard Mater 229–230:434–438

    Article  PubMed  Google Scholar 

  • Zhu HJ, Sun LF, Zhang YF, Zhang XL, Qiao JJ (2012) Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresour Technol 11:410–416

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AB: Conceptualization and writing original data. STS and IU, SUM: Helped in write up and reviewing. HIM: Supervision, review and editing final draft.

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Consent to participate

All authors participated in the experiment.

Consent for publication

All authors read and aware of publishing the review in journal Archives of Microbiology.

Additional information

Communicated by Govarthanan Muthusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, A., Shah, S.T., Ullah, I. et al. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 203, 5859–5885 (2021). https://doi.org/10.1007/s00203-021-02576-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02576-0

Keywords

Navigation