Skip to main content
Log in

Optimal induction machine parameter estimation method with artificial neural networks

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Induction machines are widely utilized in the industry due to their sturdy construction nature and relatively simple maintenance. For the design, control, optimization, and failure analysis procedures of induction machines, equivalent circuit parameters are required. These parameters can be estimated using a variety of techniques, such as traditional testing, experimental research, analytical methods, programming, and machine learning algorithms. However, the aforementioned methods have limitations; experimental methods are laborious and time-consuming, analytical methods require complicated and iterative computations for each machine, and programming algorithms involve writing of lengthy command sequences. The article concentrates on a high precision estimation method based on neural network algorithms to avoid complex calculations, thus, minimizing time and effort, and eliminating errors. In this context, it is aimed to provide a greater reliability compared to studies using small amounts of datasets and to investigate earlier methods, which are not studied vastly, for estimating the parameters of induction machines. In this regard, three distinct artificial neural networks were applied to a large dataset consisting of 1164 machines with power output ranging from 4 to 900 kW and belonging to 7 different manufacturers. RMSE values of 0.0125 were attained in parameter estimation, and artificial neural networks produced encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Amaral GFV, Baccarini JMR, Coelho FCR, Rabelo LM (2020) A high precision method for induction machine parameters estimation from manufacturer data. IEEE Trans Energy Convers 36(2):1226–1233. https://doi.org/10.1109/TEC.2020.3032320

    Article  Google Scholar 

  2. Wucherer A, Touré H (2004) Standard test procedure for polyphase induction motors and generators. IEEE, New York

  3. Syvokobylenko VF, Tkachenko SN (2020) Experimental estimation of equivalent circuit parameters of a deep bar induction motor. Paper presented at 2020 XI international conference on electrical power drive systems (ICEPDS)

  4. Morfín OA, Castañeda CE, Ruiz-Cruz R, Valenzuela FA, Murillo MA, Quezada AE, Padilla N (2018) The squirrel-cage induction motor model and its parameter identification via steady and dynamic tests. Electric Power Compon Syst 46(3):302–315. https://doi.org/10.1080/15325008.2018.1445140

    Article  Google Scholar 

  5. Che HS, Abdel-Khalik AS, Dordevic O, Levi E (2017) Parameter estimation of asymmetrical six-phase induction machines using modified standard tests. IEEE Trans Ind Electron 64(8):6075–6085. https://doi.org/10.1109/TIE.2017.2677349

    Article  Google Scholar 

  6. Helonde AR, Mankar MM (2019) Identifying three phase induction motor equivalent circuit parameters from nameplate data by different analytical methods. Int J Trend Sci Res Dev 3:642–645

    Google Scholar 

  7. Bhowmick D, Manna M, Chowdhury SK (2018) Estimation of equivalent circuit parameters of transformer and induction motor from load data. IEEE Trans Ind Appl 54(3):2784–2791. https://doi.org/10.1109/TIA.2018.2790378

    Article  Google Scholar 

  8. Wang L, Liu Y (2018) Application of simulated annealing particle swarm optimization based on correlation in parameter identification of induction motor. Math Probl Eng. https://doi.org/10.1155/2018/1869232

    Article  Google Scholar 

  9. Rezk H, Elghany AA, Al-Dhaifallah M, El Sayed AHM, Ibrahim MN (2019) Numerical estimation and experimental verification of optimal parameter identification based on modern optimization of a three phase induction motor. Mathematics 7(12):1135. https://doi.org/10.3390/math7121135

    Article  Google Scholar 

  10. Abdelwanis MI, Sehiemy RA, Hamida MA (2021) Hybrid optimization algorithm for parameter estimation of poly-phase induction motors with experimental verification. Energy AI 5:100083. https://doi.org/10.1016/j.egyai.2021.100083

    Article  Google Scholar 

  11. Vukašinović J, Štatkić S, Milovanović M, Arsić N, Perović B (2023) Combined method for the cage induction motor parameters estimation using two-stage PSO algorithm. Electr Eng 1:12. https://doi.org/10.1007/s00202-023-01849-9

    Article  Google Scholar 

  12. Guedes JJ, Castoldi MF, Goedtel A, Agulhari CM, Sanches DS (2018) Parameters estimation of three-phase induction motors using differential evolution. Electric Power Syst Res 154:204–212. https://doi.org/10.1016/j.epsr.2017.08.033

    Article  Google Scholar 

  13. Aminu M (2019) A parameter estimation algorithm for induction machines using artificial bee colony (ABC) optimization. Nigerian J Technol 38(1):193–201. https://doi.org/10.4314/njt.v38i1.24

    Article  Google Scholar 

  14. Accetta A, Alonge F, Cirrincione M, D’Ippolito F, Pucci M, Sferlazza A (2020) Ga-based off-line parameter estimation of the induction motor model including magnetic saturation and iron losses. IEEE Open J Ind Appl 1:135–147. https://doi.org/10.1109/OJIA.2020.3024567

    Article  Google Scholar 

  15. Postoyankova K, Polishchuk V, Shuvalova A (2021) Research of a genetic algorithm for identification of induction motor parameters. Paper presented at international conference on industrial engineering, applications and manufacturing (ICIEAM)

  16. Ćalasan M, Micev M, Ali ZM, Zobaa AF, Abdel Aleem SH (2020) Parameter estimation of induction machine single-cage and double-cage models using a hybrid simulated annealing-evaporation rate water cycle algorithm. Mathematics 8(6):1024. https://doi.org/10.3390/math8061024

    Article  Google Scholar 

  17. Elkholy MM, El-Hay EA, El-Fergany AA (2022) Synergy of electrostatic discharge optimizer and experimental verification for parameters estimation of three phase induction motors. Eng Sci Technol Int J 31(31):101067. https://doi.org/10.1016/j.jestch.2021.09.013

    Article  Google Scholar 

  18. Ershov MS, Komkov AN, Gamidov OM (2022) Determination of the equivalent-circuit parameters and the main characteristics of squirrel-cage low-power induction motors based on analysis of current and voltage signals. Russian Electr Eng 93(2):123–128. https://doi.org/10.3103/S1068371222020055

    Article  Google Scholar 

  19. Pavlukov VA, Tkachenko SN (2023) The hybrid method for parameters estimation of a single-loop equivalent circuit of induction motors. Paper presented at 5th international youth conference on radio electronics, electrical and power engineering (REEPE)

  20. Chaturvedi DK, Singh MP (2019) Online equivalent circuit parameter estimation of three-phase induction motor using ANN. J Inst Eng India Ser B 100:343–347. https://doi.org/10.1007/s40031-019-00387-y

    Article  Google Scholar 

  21. Jirdehi MA, Rezaei A (2016) Parameters estimation of squirrel-cage induction motors using ANN and ANFIS. Alex Eng J 55(1):357–368. https://doi.org/10.1016/j.aej.2016.01.026

    Article  Google Scholar 

  22. Çetin O, Dalcalı A, Temurtaş F (2020) A comparative study on parameters estimation of squirrel cage induction motors using neural networks with unmemorized training. Eng Sci Technol Int J 23(5):1126–1133. https://doi.org/10.1016/j.jestch.2020.03.011

    Article  Google Scholar 

  23. Romeo L, Loncarski J, Paolanti M, Bocchini G, Mancini A, Frontoni E (2020) Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0. Expert Syst Appl 140:112869

    Article  Google Scholar 

  24. Nguyen ST, Goetz S, Pham TM, Hoang A, Pham TV (2022) A detailed procedure of squirrel-cage three-phase induction motor parameter estimation using polynomial regression. Paper presented at international conference on engineering research and applications

  25. Desai AP, Nanoty A (2023) A novel practical approach to identify equivalent circuit parameters of six-phase asymmetrical induction motor. J Inst Eng (India) Ser B 104(1):9–21. https://doi.org/10.1016/j.eswa.2019.112869

    Article  Google Scholar 

  26. Al-Ahmar MA (2019) Estimation of induction motor model parameters-case study. ERJ Eng Res J 42(3):177–182

    Article  Google Scholar 

  27. Trisha, Gupta GS, Shiva Kumar S (2021) Review of the parameter estimation and transient analysis of three-phase induction motor. In: Reddy MJB, Mohanta DK, Kumar D, Ghosh D (eds) Advances in smart grid automation and industry 4.0. Springer, Singapore, pp 223–232

    Chapter  Google Scholar 

  28. Shanthamallu US, Spanias A (2022) Machine and deep learning algorithms and applications. Springer, Berlin

    Book  Google Scholar 

  29. Krause PC, Wasynczuk O, Sudhoff SD, Pekarek SD (2013) Analysis of electric machinery and drive systems. Wiley-IEEE Press, New York

    Book  Google Scholar 

  30. Santra A, Hazra S, Servadei L, Stadelmayer T, Stephan M, Dubey A (2022) Methods and techniques in deep learning: advancements in Mmwave Radar solutions. Wiley-IEEE Press, New York

    Book  Google Scholar 

  31. Haykin S (2009) Neural networks and learning machines. Pearson Prentice Hall, Hoboken

    Google Scholar 

  32. Das SK, Das SP, Dey N, Hassanien AE (eds) (2021) Machine learning algorithms for industrial applications. Springer, Berlin

  33. Generalized Regression Neural Networks - MathWorks Australia. https://au.mathworks.com/help/deeplearning/ug/generalized-regression-neural-networks.html. Accessed 10 Jun 2023

  34. Singh P (ed) (2022) Fundamentals and methods of machine and deep learning: algorithms, tools, and applications. Wiley-Scrivener, New York

  35. Naser MZ, Alavi AH (2021) Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences. Archit Struct Constr. https://doi.org/10.1007/s44150-021-00015-8

  36. Dikbaş F (2018) A new two-dimensional rank correlation coefficient. Water Resour Manag 32(5):1539–1553. https://doi.org/10.1007/s11269-017-1886-0

    Article  Google Scholar 

  37. Teco Technical Catalogue. https://www.teco-group.eu/Resources/Electric-Motors/Catalog-Manuals/TECO_Motor_Katalog_UK_web-2014. [Accessed 10-Jan-2023]

  38. Weg W40 Open Induction Motors Technical Catalogue. https://static.weg.net/medias/downloadcenter/h29/h8b/WEG-w40-european-market-50049923-brochure-english-web.pdf. Accessed 10 Jan 2023

  39. IMfinity 3-Phase Induction Motors. https://www.leroy-somer.com/documentation_pdf/5147_en.pdf. Accessed 10 Jan 2023

  40. Crompton Standard Motor. https://www.makhariaelectricals.net/CG-Crompton-Standard-Motor.html. Accessed 10 Jan 2023

  41. Havells Energy Efficiency 3-Phase LV Induction Motors. https://havells.com/HavellsProductImages/HavellsIndia/Content/dam/havells/brouchers/dealer/brochure/Motor%20Catalogue%202018.pdf. Accessed 10 Jan 2023

  42. Bharat Bijlee AC Motors. http://www.kbengineering.co.in/bharat-bijlee-motor.php. Accessed 10 Jan 2023

  43. Kirloskar Low Voltage 3-Phase Induction Motors. https://www.kirloskaroilengines.com/documents/541738/771479/IETC+AC+MOTOR+Catalogue+%282%29.pdf/8a67e60c-1516-c8ba-4410-3b015542e14f?t=1650967970549. Accessed 10 Jan 2023

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conceptualization. The methodology was determined by SNI, MT, and NB. Formal analysis and investigation were performed by SNI, MT, and EA. The study was supervised by NB. The first draft of the manuscript was written by SNI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sema Nur Ipek.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipek, S.N., Taskiran, M., Bekiroglu, N. et al. Optimal induction machine parameter estimation method with artificial neural networks. Electr Eng 106, 1959–1975 (2024). https://doi.org/10.1007/s00202-023-02049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-02049-1

Keywords

Navigation