Skip to main content
Log in

Finite element framework for electron beam melting process simulation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electron beam melting (EBM®) is a metallic printing process that has become increasingly sophisticated over the past decade. The formation of residual stress due to a high-energy electron beam is considered a primary hindrance in the maturation of the process itself and, subsequently, the quality of the printed parts. Contrary to hit and trial, the finite element method (FEM) has become a prevalent technique for estimating residual stresses and subsequent distortion in additive manufacturing chunks. Since the EBM® is a powder bed fusion (PBF) process, powder material properties are substantially different from those of solid and undoubtedly important for efficient simulation. Several reviews have been published on FEM applications in additive manufacturing so far; however, a straightforward solution for material modeling from EBM® viewpoint is still needed. This critical review paper is an attempt to propose a material modeling approach to establish an adequate FEM model for EBM® process simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rajaguru K, Karthikeyan T, Vijayan V (2020) Additive manufacturing – state of art. Mater Today Proc 21:628–633. https://doi.org/10.1016/j.matpr.2019.06.728

    Article  Google Scholar 

  2. Zafar MQ, Zhao H (2020) 4D printing: future insight in additive manufacturing. Met Mater Int 26:564–585. https://doi.org/10.1007/s12540-019-00441-w

    Article  Google Scholar 

  3. DebRoy T, Wei HL, Zuback JS, et al (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2017.10.001

  4. T.Caffry, T. Wohlers (2018) Wohlers report 2018, 3D printing and additive manufacturing state of the industry: annual woldwide progress report, Wohlers associates 2018. Wohlers Assoc

  5. Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46:151–186. https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  Google Scholar 

  6. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14

    Article  Google Scholar 

  7. Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE (2013) Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform 22:3872–3883. https://doi.org/10.1007/s11665-013-0658-0

    Article  Google Scholar 

  8. Gong X, Anderson T, Chou K (2014) Review on powder - based electron beam additive manufacturing technology. Manuf Rev 1:1–9. https://doi.org/10.1051/mfreview/2014001

    Article  Google Scholar 

  9. Murr LE, Gaytan SM (2014) Electron beam melting. In: Comprehensive Materials Processing. https://doi.org/10.1016/B978-0-08-096532-1.01004-9

  10. Dioxide T, Beam E (2016) Electron beam melting implant materials and their processing technologies

  11. Yang L, Harrysson O, West H, Cormier D (2012) Compressive properties of Ti-6Al-4V auxetic mesh structures made by electron beam melting. Acta Mater 60:3370–3379. https://doi.org/10.1016/j.actamat.2012.03.015

    Article  Google Scholar 

  12. Schwerdtfeger J, Heinl P, Singer RF, Körner C (2010) Auxetic cellular structures through selective electron-beam melting. Phys Status Solidi Basic Res 247:269–272. https://doi.org/10.1002/pssb.200945513

    Article  Google Scholar 

  13. Körner C, Helmer H, Bauereiß A, Singer RF (2014) Tailoring the grain structure of IN718 during selective electron beam melting. In: MATEC Web of Conferences

  14. Murr LE, Li S (2016) Electron-beam additive manufacturing of high-temperature metals. MRS Bull 41:752–757

    Article  Google Scholar 

  15. Konyashin I, Hinners H, Ries B, Kirchner A, Klöden B, Kieback B, Nilen RWN, Sidorenko D (2019) Additive manufacturing of WC-13%Co by selective electron beam melting: achievements and challenges. Int J Refract Met Hard Mater 84:105028. https://doi.org/10.1016/J.IJRMHM.2019.105028

    Article  Google Scholar 

  16. Wang L, Li S, Yan M, Cheng Y, Hou W, Wang Y, Ai S, Yang R, Dai K (2020) Fatigue properties of titanium alloy custom short stems fabricated by electron beam melting. J Mater Sci Technol 52:180–188. https://doi.org/10.1016/j.jmst.2020.02.047

    Article  Google Scholar 

  17. Adler L, Fu Z, Koerner C (2020) Electron beam based additive manufacturing of Fe3Al based iron aluminides – processing window, microstructure and properties. Mater Sci Eng A 785:139369. https://doi.org/10.1016/j.msea.2020.139369

    Article  Google Scholar 

  18. Hrabe N, Gnäupel-Herold T, Quinn T (2017) Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): effects of internal defects and residual stress. Int J Fatigue 94:202–210. https://doi.org/10.1016/j.ijfatigue.2016.04.022

    Article  Google Scholar 

  19. Bartlett JL, Li X (2019) An overview of residual stresses in metal powder bed fusion. Addit Manuf. https://doi.org/10.1016/j.addma.2019.02.020

  20. Markl M, Lodes M, Franke M, Körner C (2017) Additive manufacturing using selective electron beam melting. Weld Cut 16:177–184

    Google Scholar 

  21. Parandoush P, Hossain A (2014) A review of modeling and simulation of laser beam machining. Int J Mach Tools Manuf 85:135–145

    Article  Google Scholar 

  22. Madenci E, Guven I (2015) The finite element method and applications in engineering using ANSYS®, second edition

  23. Vastola G, Zhang G, Pei QX, Zhang YW (2016) Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling. Addit Manuf 12:231–239. https://doi.org/10.1016/j.addma.2016.05.010

    Article  Google Scholar 

  24. Galati M, Snis A, Iuliano L (2019) Powder bed properties modelling and 3D thermo-mechanical simulation of the additive manufacturing electron beam melting process. Addit Manuf 30:100897. https://doi.org/10.1016/j.addma.2019.100897

    Article  Google Scholar 

  25. Shen N, Chou K (2012) Simulations of thermo-mechanical characteristics in electron beam additive manufacturing. In: volume 3: design, materials and manufacturing, parts A, B, and C. https://doi.org/10.1115/IMECE2012-88476

  26. Qi HB, Yan YN, Lin F, Zhang RJ (2007) Scanning method of filling lines in electron beam selective melting. Proc Inst Mech Eng Part B J Eng Manuf 221:1685–1694. https://doi.org/10.1243/09544054JEM913

    Article  Google Scholar 

  27. Zäh MF, Lutzmann S (2010) Modelling and simulation of electron beam melting. Prod Eng 4:15–23. https://doi.org/10.1007/s11740-009-0197-6

    Article  Google Scholar 

  28. Cheng B, Chou K (2013) Melt pool geometry simulations for powder-based electron beam additive manufacturing. In: 24th International SFF Symposium - An Additive Manufacturing Conference, SFF 2013

  29. Cheng B, Price S, Gong X, et al (2014) Speed function effects in electron beam additive manufacturing. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

  30. Shen N, Chou K (2012) Numerical thermal analysis in electron beam additive manufacturing with preheating effects. In: 23rd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2012

  31. Riedlbauer D, Scharowsky T, Singer RF, Steinmann P, Körner C, Mergheim J (2017) Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V. Int J Adv Manuf Technol 88:1309–1317. https://doi.org/10.1007/s00170-016-8819-6

    Article  Google Scholar 

  32. Cheng B, Lu P, Chou K (2014) Thermomechanical investigation of overhang fabrications in electron beam additive manufacturing. In: ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference

  33. Riedlbauer D, Steinmann P, Mergheim J (2014) Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations. Comput Mech 54:109–122. https://doi.org/10.1007/s00466-014-1026-0

    Article  MathSciNet  MATH  Google Scholar 

  34. Gong X, Cheng B, Price S, Chou K (2013) Powder-bed electron-beam-melting additive manufacturing: powder characterization, process simulation and metrology. Early Career Tech Conf Birmingham, AL

    Google Scholar 

  35. Cheng B, Price S, Lydon J, et al (2014) On process temperature in powder-bed electron beam additive Manufacturing: Model Development and Validation. J Manuf Sci Eng https://doi.org/10.1115/1.4028484

  36. Galati M, Snis A, Iuliano L (2019) Experimental validation of a numerical thermal model of the EBM process for Ti6Al4V. Comput Math Appl 78:2417–2427. https://doi.org/10.1016/j.camwa.2018.07.020

    Article  MathSciNet  Google Scholar 

  37. Galati M, Iuliano L, Salmi A, Atzeni E (2017) Modelling energy source and powder properties for the development of a thermal FE model of the EBM additive manufacturing process. Addit Manuf 14:49–59. https://doi.org/10.1016/j.addma.2017.01.001

    Article  Google Scholar 

  38. Schoinochoritis B, Chantzis D, Salonitis K (2015) Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review. Proc Inst Mech Eng Part B J Eng Manuf 1–22. https://doi.org/10.1177/0954405414567522

  39. Luo Z, Zhao Y (2018) A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive Manufacturing. Addit Manuf 21:318–332. https://doi.org/10.1016/j.addma.2018.03.022

    Article  Google Scholar 

  40. Megahed M, Mindt H-W, N’Dri N, Duan H, Desmaison O (2016) Metal additive-manufacturing process and residual stress modeling. Integr Mater Manuf Innov 5:4–93. https://doi.org/10.1186/s40192-016-0047-2

    Article  Google Scholar 

  41. Khorasani A, Gibson I, Veetil JK, Ghasemi AH (2020) A review of technological improvements in laser-based powder bed fusion of metal printers. Int J Adv Manuf Technol 108:191–209. https://doi.org/10.1007/s00170-020-05361-3

    Article  Google Scholar 

  42. Galati M, Iuliano L (2018) A literature review of powder-based electron beam melting focusing on numerical simulations. Addit Manuf 19:1–20. https://doi.org/10.1016/j.addma.2017.11.001

    Article  Google Scholar 

  43. Hiemenz J (2007) Electron Beam melting. Adv Mater Process 14:45–46. https://doi.org/10.1063/1.3057441

    Article  Google Scholar 

  44. Manufacturing A (2010) Arcam. Europe

  45. Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting - a review. Int Mater Rev 61:361–377. https://doi.org/10.1080/09506608.2016.1176289

    Article  Google Scholar 

  46. Ghods S, Schultz E, Wisdom C, Schur R, Pahuja R, Montelione A, Arola D, Ramulu M (2020) Electron beam additive manufacturing of Ti6Al4V: evolution of powder morphology and part microstructure with powder reuse. Materialia. 9:100631. https://doi.org/10.1016/j.mtla.2020.100631

    Article  Google Scholar 

  47. Withers PJ (2007) Residual stress and its role in failure. Rep Prog Phys 70:2211–2264. https://doi.org/10.1088/0034-4885/70/12/R04

    Article  Google Scholar 

  48. Withers PJ, Bhadeshia HKDH (2001) Residual stress part 2 - nature and origins. Mater Sci Technol

  49. Li C, Liu ZY, Fang XY, Guo YB (2018) Residual stress in metal additive manufacturing. In: Procedia CIRP, Residual Stress in Metal Additive Manufacturing. https://doi.org/10.1016/j.procir.2018.05.039

  50. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360

    Article  Google Scholar 

  51. Mercelis P, Kruth J (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  52. Li Y, Zhou K, Tan P, Tor SB, Chua CK, Leong KF (2018) Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci 136:24–35. https://doi.org/10.1016/j.ijmecsci.2017.12.001

    Article  Google Scholar 

  53. Yang DY, Jung DW, Song IS, Yoo DJ, Lee JH (1995) Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes. J Mater Process Technol 50:39–53. https://doi.org/10.1016/0924-0136(94)01368-B

    Article  Google Scholar 

  54. Harewood FJ, McHugh PE (2007) Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput Mater Sci 39:481–494. https://doi.org/10.1016/j.commatsci.2006.08.002

    Article  Google Scholar 

  55. Cheng B, Chou K (2018) A numerical investigation of thermal property effects on melt pool characteristics in powder-bed electron beam additive manufacturing. Proc Inst Mech Eng Part B J Eng Manuf 232:1615–1627. https://doi.org/10.1177/0954405416673105

    Article  Google Scholar 

  56. Jiang W, Dalgarno KW, Childs THC (2002) Finite element analysis of residual stresses and deformations in direct metal SLS process. SFF Symp:340–348

  57. Fu CH, Guo YB (2014) Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V. J Manuf Sci Eng 136:061004. https://doi.org/10.1115/1.4028539

    Article  Google Scholar 

  58. Saunders N, Guo Z, Li X et al (2003) Using JMatPro to model materials properties and behavior. JOM. 55:60–65. https://doi.org/10.1007/s11837-003-0013-2

    Article  Google Scholar 

  59. Bugeda Miguel Cervera G, Lombera G (1999) Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyp J 5:21–26. https://doi.org/10.1108/13552549910251846

    Article  Google Scholar 

  60. Tolochko NK, Laoui T, Khlopkov YV et al (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J 6:155–161. https://doi.org/10.1108/13552540010337029

    Article  Google Scholar 

  61. Childs THG, Hauser G, Badrossamay M (2005) Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling. In: Proceedings of the institution of mechanical engineers, Part B: J Eng Manuf. pp 339–357

  62. Bauereiß A, Scharowsky T, Körner C (2014) Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol 214:2497–2504. https://doi.org/10.1016/j.jmatprotec.2014.05.002

    Article  Google Scholar 

  63. Gusarov AV, Laoui T, Froyen L, Titov VI (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46:1103–1109. https://doi.org/10.1016/S0017-9310(02)00370-8

    Article  MATH  Google Scholar 

  64. Tolochko NK, Arshinov MK, Gusarov AV, Titov VI, Laoui T, Froyen L (2003) Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyp J 9:314–326. https://doi.org/10.1108/13552540310502211

    Article  Google Scholar 

  65. Venuvinod PK, Ma W (2004) Rapid prototyping: laser-based and other technologies books. google.com

  66. Antony K, Arivazhagan N, Senthilkumaran K (2014) Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J Manuf Process 16:345–355. https://doi.org/10.1016/j.jmapro.2014.04.001

    Article  Google Scholar 

  67. Childs THC, Berzins M, Ryder GR, Tontowi A (1999) Selective laser sintering of an amorphous polymer - simulations and experiments. Proc Inst Mech Eng Part B J Eng Manuf 213:333–349. https://doi.org/10.1243/0954405991516822

    Article  Google Scholar 

  68. S.Yagi DK (1957) Studies on effective thermal conductivities in packed beds. AlChE J 373–381

  69. Rombouts M, Froyen L, Gusarov AV, Bentefour EH, Glorieux C (2005) Light extinction in metallic powder beds: correlation with powder structure. J Appl Phys 98:013533. https://doi.org/10.1063/1.1948509

    Article  Google Scholar 

  70. Sih SS, Barlow JW (2004) The prediction of the emissivity and thermal conductivity of powder beds. Part Sci Technol 22:427–440. https://doi.org/10.1080/02726350490501682

    Article  Google Scholar 

  71. Sih SS, Barlow JW (1994) Measurement and prediction of the thermal conductivity of powders at high temperatures. In Solid Freeform Fabrication Symposium Proceedings (1994). Austin, Tex.: Center for Materials Science, University of Texas at Austin. pp 321–329

  72. Denlinger ER, Jagdale V, Srinivasan GV, el-Wardany T, Michaleris P (2016) Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements. Addit Manuf 11:7–15. https://doi.org/10.1016/j.addma.2016.03.003

    Article  Google Scholar 

  73. Childs THC, Berzins M, Ryder GR, Tontowi A (1999) Selective laser sintering of an amorphous polymer—simulations and experiments. Proc Inst Mech Eng Part B J Eng Manuf 213:333–349. https://doi.org/10.1243/0954405991516822

    Article  Google Scholar 

  74. Sun MM, Beaman JJ (1991) A three dimensional model for selective laser sintering. Proc Solid Free Fabr Symp

  75. Jamshidinia M, Kong F, Kovacevic R (2013) Numerical modeling of heat distribution in the electron beam melting ® of Ti-6Al-4V. J Manuf Sci Eng 135. https://doi.org/10.1115/1.4025746

  76. Raiser Z (1967) Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York, NY

    Google Scholar 

  77. Yan W, Liu WK, Lin F (2015) An effective finite element heat transfer model for electron beam melting an effective finite element heat transfer model for electron beam melting process

  78. Smith CJ, Tammas-Williams S, Hernandez-Nava E, Todd I (2017) Tailoring the thermal conductivity of the powder bed in electron beam melting (EBM) additive manufacturing. Sci Rep 7:10514. https://doi.org/10.1038/s41598-017-11243-8

    Article  Google Scholar 

  79. Thummler F OR (1993) An introduction to powder metallurgy

  80. Mertens A, Reginster S, Paydas H, Contrepois Q, Dormal T, Lemaire O, Lecomte-Beckers J (2014) Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures. Powder Metall 57:184–189. https://doi.org/10.1179/1743290114Y.0000000092

    Article  Google Scholar 

  81. Wei LC, Ehrlich LE, Powell-Palm MJ, Montgomery C, Beuth J, Malen JA (2018) Thermal conductivity of metal powders for powder bed additive manufacturing. Addit Manuf 21:201–208. https://doi.org/10.1016/j.addma.2018.02.002

    Article  Google Scholar 

  82. Ladani L, Romano J, Brindley W, Burlatsky S (2017) Effective liquid conductivity for improved simulation of thermal transport in laser beam melting powder bed technology. Addit Manuf 14:13–23. https://doi.org/10.1016/j.addma.2016.12.004

    Article  Google Scholar 

  83. Shen N, Chou K (2012) Thermal modeling of electron beam additive manufacturing process: powder sintering effects. In: ASME 2012 International Manufacturing Science and Engineering Conference. p 287

  84. Ren J, Liu J, Yin J (2011) Simulation of transient temperature field in the selective laser sintering process of W/Ni powder mixture. IFIP Advances in Information and Communication Technology. https://doi.org/10.1007/978-3-642-18369-0_59

  85. Yan W, Smith J, Ge W, Lin F, Liu WK (2015) Multiscale modeling of electron beam and substrate interaction: a new heat source model. Comput Mech 56:265–276. https://doi.org/10.1007/s00466-015-1170-1

    Article  MATH  Google Scholar 

  86. Jamshidinia M, Kong F, Kovacevic R (2013) The coupled CFD-FEM model of electron beam melting® (EBM) recommended citation-Birmingham, Alabama USA THE COUPLED CFD-FEM MODEL OF ELECTRON BEAM MELTING® (EBM). ASME Dist F-ECTC. https://doi.org/10.1115/1.4025746

  87. Ahsan MN, Pinkerton AJ (2011) An analytical-numerical model of laser direct metal deposition track and microstructure formation. Model Simul Mater Sci Eng 19:055003. https://doi.org/10.1088/0965-0393/19/5/055003

    Article  Google Scholar 

  88. Kelly SM, Kampe SL (2004) Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: part II. thermal modeling. Metall Mater Trans A 35:1869–1879. https://doi.org/10.1007/s11661-004-0095-7

    Article  Google Scholar 

  89. Sih SS, Barlow JW (1995) Emissivity of powder beds. 6th Solid Free Fabr Symp. https://doi.org/10.15781/T2V40KJ7S

  90. Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 21:085011. https://doi.org/10.1088/0965-0393/21/8/085011

    Article  Google Scholar 

  91. Klassen A, Bauereiß A, Körner C (2014) Modelling of electron beam absorption in complex geometries. J Phys D Appl Phys 47:065307. https://doi.org/10.1088/0022-3727/47/6/065307

    Article  Google Scholar 

  92. Liu P, Cui X, Deng J, Li S, Li Z, Chen L (2019) Investigation of thermal responses during metallic additive manufacturing using a “Tri-Prism” finite element method. Int J Therm Sci 136:217–229. https://doi.org/10.1016/j.ijthermalsci.2018.10.022

    Article  Google Scholar 

  93. Pavelic. V, Tanbakuchi R. U 0. A and M (1969) Experimental and computed temperature histories in gas tungsten arc welding of thin plates Weld J Res Suppliment 46:

  94. Cheng B, Chou K Thermal stresses associated with partoverhang geometry in Electron beam additive manufacturing: pro-cess parameter effects. In 25th Annual International Solid Freeform Fabrication Symposium. An Additive Manufacturing Conference, Austin, USA

  95. Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211:978–987. https://doi.org/10.1016/j.jmatprotec.2010.12.016

    Article  Google Scholar 

  96. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15:299–305. https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  97. Denlinger ER, Irwin J, Michaleris P (2014) Thermomechanical modeling of additive manufacturing large parts. J Manuf Sci Eng 136:061007. https://doi.org/10.1115/1.4028669

    Article  Google Scholar 

  98. Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60. https://doi.org/10.1016/j.finel.2014.04.003

    Article  Google Scholar 

  99. Yang Q, Zhang P, Cheng L, Min Z, Chyu M, To AC (2016) Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing. Addit Manuf 12:169–177. https://doi.org/10.1016/j.addma.2016.06.012

    Article  Google Scholar 

  100. Cao J, Gharghouri MA, Nash P (2016) Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates. J Mater Process Technol 237:409–419. https://doi.org/10.1016/j.jmatprotec.2016.06.032

    Article  Google Scholar 

  101. Zhu G, Zhang A, Li D, Tang Y, Tong Z, Lu Q (2011) Numerical simulation of thermal behavior during laser direct metal deposition. Int J Adv Manuf Technol 55:945–954. https://doi.org/10.1007/s00170-010-3142-0

    Article  Google Scholar 

  102. Jendrzejewski R, Śliwiński G, Krawczuk M, Ostachowicz W (2004) Temperature and stress fields induced during laser cladding. Comput Struct 82:653–658. https://doi.org/10.1016/j.compstruc.2003.11.005

    Article  Google Scholar 

  103. Ye R, Smugeresky JE, Zheng B, Zhou Y, Lavernia EJ (2006) Numerical modeling of the thermal behavior during the LENS®process. Mater Sci Eng A 428:47–53. https://doi.org/10.1016/j.msea.2006.04.079

    Article  Google Scholar 

  104. Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A (2008) Analytical and numerical modelling of the direct metal deposition laser process. J Phys D Appl Phys 41:025403. https://doi.org/10.1088/0022-3727/41/2/025403

    Article  Google Scholar 

  105. Matsumoto M, Shiomi M, Osakada K, Abe F (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tools Manuf 42:61–67. https://doi.org/10.1016/S0890-6955(01)00093-1

    Article  Google Scholar 

  106. Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D finite element analysis in the selective laser melting process. Int J Simul Model 10:113–121. https://doi.org/10.2507/IJSIMM10(3)1.169

    Article  Google Scholar 

  107. Zeng K, Pal D, Gong HJ, Patil N, Stucker B (2015) Comparison of 3DSIM thermal modelling of selective laser melting using new dynamic meshing method to ANSYS. Mater Sci Technol 31:945–956. https://doi.org/10.1179/1743284714Y.0000000703

    Article  Google Scholar 

  108. Inc ANSYS (2013) ANSYS FLUENT theory guide. Release 182:21–29. https://doi.org/10.1016/0140-3664(87)90311-2

    Article  Google Scholar 

  109. Bangerth W, Hartmann R, Kanschat G (2007) deal.II---A general-purpose object-oriented finite element library. ACM Trans Math Softw. https://doi.org/10.1145/1268776.1268779

  110. Pal D, Patil N, Kutty KH, Zeng K, Moreland A, Hicks A, Beeler D, Stucker B (2016) A generalized feed-forward dynamic adaptive mesh refinement and derefinement finite-element framework for metal laser sintering—part II: nonlinear thermal simulations and validations 2. J Manuf Sci Eng 138. https://doi.org/10.1115/1.4032078

  111. Patil N, Pal D, Khalid Rafi H, Zeng K, Moreland A, Hicks A, Beeler D, Stucker B (2015) A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering—part I: formulation and algorithm development. J Manuf Sci Eng 137. https://doi.org/10.1115/1.4030059

  112. Olleak A, Xi Z (2019) Simulation of layer-by-layer selective laser melting process with an efficient Remeshing technique. Procedia Manuf 34:613–618. https://doi.org/10.1016/j.promfg.2019.06.167

    Article  Google Scholar 

  113. Li C, Liu JF, Fang XY, Guo YB (2017) Efficient predictive model of part distortion and residual stress in selective laser melting. Addit Manuf 17:157–168. https://doi.org/10.1016/j.addma.2017.08.014

    Article  Google Scholar 

  114. Yan W, Qian Y, Ma W, Zhou B, Shen Y, Lin F (2017) Modeling and experimental validation of the electron beam selective melting process. Engineering. 3:701–707. https://doi.org/10.1016/J.ENG.2017.05.021

    Article  Google Scholar 

  115. Wang Z, Liu P, Xiao Y, Cui X, Hu Z, Chen L (2019) A data-driven approach for process optimization of metallic additive manufacturing under uncertainty. J Manuf Sci Eng Trans ASME 141. https://doi.org/10.1115/1.4043798

  116. Wang Z, Liu P, Ji Y, Mahadevan S, Horstemeyer MF, Hu Z, Chen L, Chen LQ (2019) Uncertainty quantification in metallic additive manufacturing through physics-informed data-driven modeling. JOM. 71:2625–2634. https://doi.org/10.1007/s11837-019-03555-z

    Article  Google Scholar 

  117. Li R, Shi Y, Liu J, Yao H, Zhang W (2009) Effects of processing parameters on the temperature field of selective laser melting metal powder. Powder Metall Met Ceram 48:186–195. https://doi.org/10.1007/s11106-009-9113-z

    Article  Google Scholar 

  118. Poirier DR, Geiger GH (2016) Transport phenomena in materials processing

  119. Irwin J, Michaleris P (2016) A line heat input model for additive manufacturing. J Manuf Sci Eng 138:111004. https://doi.org/10.1115/1.4033662

    Article  Google Scholar 

  120. Zain-ul-Abdein M, Nelias D, Jullien JF, Deloison D (2009) Prediction of laser beam welding-induced distortions and residual stresses by numerical simulation for aeronautic application. J Mater Process Technol 209:2907–2917. https://doi.org/10.1016/j.jmatprotec.2008.06.051

    Article  Google Scholar 

  121. Kong F, Kovacevic R (2010) 3D finite element modeling of the thermally induced residual stress in the hybrid laser/arc welding of lap joint. J Mater Process Technol 210:941–950. https://doi.org/10.1016/j.jmatprotec.2010.02.006

    Article  Google Scholar 

  122. Ueda Y, Fukuda K, Nakacho K, Endo S (1975) A new measuring method of residual stresses with the aid of finite element method and reliability of estimated values. J Soc Nav Archit Japan 1975:499–507. https://doi.org/10.2534/jjasnaoe1968.1975.138_499

    Article  Google Scholar 

  123. Li C, Fu CH, Guo YB, Fang FZ (2015) Fast prediction and validation of part distortion in selective laser melting. Procedia Manufacturing, In, pp 355–365

    Google Scholar 

  124. Neugebauer F, Keller N, Ploshikhin V et al (2014) Multi scale FEM simulation for distortion calculation in additive manufacturing of hardening stainless steel. Proc Int Work Therm Form Weld Distortion:1–11

  125. Umer U, Ameen W, Haider Abidi M et al (2019) Modeling the effect of different support structures in electron beam melting of titanium alloy using finite element models. Metals (Basel) 9. https://doi.org/10.3390/met9070806

  126. Gnäupel-Herold T, Slotwinski J, Moylan S (2014) Neutron measurements of stresses in a test artifact produced by laser-based additive manufacturing. In: AIP Conference Proceedings

  127. Cao J, Nash P (2016) Numerical simulation of the effects of preheating on electron beam additive manufactured Ti-6Al-4V build plate. Mater Sci Forum 879:274–278. https://doi.org/10.4028/www.scientific.net/MSF.879.274

    Article  Google Scholar 

  128. Prabhakar P, Sames WJ, Dehoff R, Babu SS (2015) Computational modeling of residual stress formation during the electron beam melting process for Inconel 718. Addit Manuf 7:83–91. https://doi.org/10.1016/j.addma.2015.03.003

    Article  Google Scholar 

  129. Sochalski-Kolbus LM, Payzant EA, Cornwell PA, Watkins TR, Babu SS, Dehoff RR, Lorenz M, Ovchinnikova O, Duty C (2015) Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metall Mater Trans A Phys Metall Mater Sci 46:1419–1432. https://doi.org/10.1007/s11661-014-2722-2

    Article  Google Scholar 

  130. Cheng B, Chou K (2020) A numerical investigation of support structure designs for overhangs in powder bed electron beam additive manufacturing. J Manuf Process 49:187–195. https://doi.org/10.1016/j.jmapro.2019.11.018

    Article  Google Scholar 

  131. Li N, Huang S, Zhang G et al (2019) Progress in additive manufacturing on new materials: a review. J Mater Sci Technol

  132. Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372. https://doi.org/10.1016/j.commatsci.2016.10.003

    Article  Google Scholar 

  133. Guo C, Ge W, Lin F (2015) Effects of scanning parameters on material deposition during Electron Beam Selective Melting of Ti-6Al-4V powder. J Mater Process Technol 217:148–157. https://doi.org/10.1016/j.jmatprotec.2014.11.010

    Article  Google Scholar 

  134. Ma L, Bin H (2006) Temperature and stress analysis and simulation in fractal scanning-based laser sintering. Int J Adv Manuf Technol 34:898–903. https://doi.org/10.1007/s00170-006-0665-5

    Article  Google Scholar 

  135. Biffi CA, Fiocchi J, Ferrario E, Fornaci A, Riccio M, Romeo M, Tuissi A (2020) Effects of the scanning strategy on the microstructure and mechanical properties of a TiAl6V4 alloy produced by electron beam additive manufacturing. Int J Adv Manuf Technol 107:4913–4924. https://doi.org/10.1007/s00170-020-05358-y

    Article  Google Scholar 

  136. Murr LE, Gaytan SM, Medina F et al (2009) Effect of build parameters and build geometries on residual microstructures and mechanical properties of Ti-6Al-4V components built by electron beam melting (EBM). J Mech Behav Biomed Mater

  137. Puebla K, Murr LE, Gaytan SE et al (2012) Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V. Mater Sci Appl 03:259–264. https://doi.org/10.4236/msa.2012.35038

    Article  Google Scholar 

  138. Wang X, Gong X, Chou K (2015) Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing. In: Procedia Manufacturing

  139. Yang J, Bin H, Zhang X, Liu Z (2003) Fractal scanning path generation and control system for selective laser sintering (SLS). Int J Mach Tools Manuf 43:293–300. https://doi.org/10.1016/S0890-6955(02)00212-2

    Article  Google Scholar 

Download references

Funding

The National Key R&D Program of China (2017YFB1103300), The State Key Lab of Tribology, Tsinghua University China (SKLT2018B06), and National Natural Science Foundation of China (51975320) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, M.Q., Wu, C.C., Zhao, H. et al. Finite element framework for electron beam melting process simulation. Int J Adv Manuf Technol 109, 2095–2112 (2020). https://doi.org/10.1007/s00170-020-05707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05707-x

Keywords

Navigation