Skip to main content
Log in

Theoretical solutions for spectral function of the turbulent medium based on the stochastic equations and equivalence of measures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The analytical formulas for spectrum of turbulence on the basis of the new theory of stochastic hydrodynamics are presented. This theory is based on the theory of stochastic equations of continuum laws and equivalence of measures between random and deterministic movements. The purpose of the article is to present a solutions based on these stochastic equations for the formation of the turbulence spectrum in the form of the spectral function \( E(k)_j\) depending on wave numbers k in form \(E(k)_{{j}}\sim k^{n}\). At the beginning of the article two formulas for the viscous interval were obtained. The first analytical formula gives the law \(E(k)_{j}\sim k^{-3}\) and agrees with the experimental data for initial period of the dissipation of turbulence. The second analytical formula gives the law which is in a satisfactory agreement with the classical Heisenberg’s dependence in the form of \(E(k)_{j}\sim k^{-7}\). The final part of the paper presents four analytical solutions for a spectral function on the form \(E(k)_{j}\sim k^{n}\), \(\hbox {n}=(-1,4;-5/3;-3;-7)\) which are derived on the basis of stochastic equations and equivalence of measures. The statistical deviation of the calculated dependences for the spectral function from the experimental data is above 20%. It should be emphasized that statistical theory allowed to determine only two theoretical formulas that were determined by Kolmogorov \(E(k)_{j}\sim k^{{-5/3}}\) and Heisenberg \(E(k)_{j}\sim k^{{-7}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32(1), 16–18 (1941)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Kolmogorov, A.N.: A new metric invariant of transitive dynamic sets and automorphisms of the Lebesgue spaces. Dokl. Akad. Nauk SSSR 119(5), 861–864 (1958)

    MathSciNet  MATH  Google Scholar 

  3. Kolmogorov, A.N.: Mathematical models of turbulent motion of an incompressible viscous fluid. Usp. Mat. Nauk 59(1(355)), 5–10 (2004)

    Article  MathSciNet  Google Scholar 

  4. Landau, L.D.: Toward the problem of turbulence. Dokl. Akad. Nauk SSSR 44, 339–342 (1944)

    Google Scholar 

  5. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963). https://doi.org/10.1175/1520-0469

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971). https://doi.org/10.1007/bf01646553. (also 23, 343–344

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Feigenbaum, M.: The transition to aperiodic behavior in turbulent sets. Commun. Math. Phys. 77(1), 65–86 (1980)

    Article  ADS  Google Scholar 

  8. Klimontovich, Y.L.: Problems of the statistical theory of open sets: criteria of the relative degree of the ordering of states in the self-organization processes. Usp. Fiz. Nauk 158(1), 59–91 (1989). https://doi.org/10.1070/pu1999v042n01abeh000445

    Article  Google Scholar 

  9. Haller, G.: Chaos Near Resonance. Springer, Berlin (1999). https://doi.org/10.1007/978-1-4612-1508-0

    Book  MATH  Google Scholar 

  10. Orzag, S.A., Kells, L.C.: Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 96(1), 159–205 (1980). https://doi.org/10.1017/s0022112080002066/

    Article  ADS  MATH  Google Scholar 

  11. Newton, P.K.: The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere. J. Fluid Mech. 786, 1–4 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Vishik, M.I., Zelik, S.V., Chepyzhov, V.V.: Regular attractors and nonautonomous perturbations of them. Mat. Sb. 204(1), 3–46 (2013)

    Article  MathSciNet  Google Scholar 

  13. Landau, L.D., Lifshits, E.F.: Fluid Mechanics. Press, Oxford London, Perg (1959)

    Google Scholar 

  14. Constantin, P., Foais, C., Temam, R.: On dimensions of the attractors in two-dimensional turbulence. Physica D 30, 284–296 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. Malraison, B., Berge, P., Dubois, M.: Dimension of strange attractors: an experimental determination for the chaotic regime of two convective systems. J. Phys. Lett. 44, L897–L902 (1983)

    Article  Google Scholar 

  16. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 9(1), 189–208 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. Rabinovich, M.I., Reiman, A.M., Sushchik, M.M., et al.: Correlation dimension of the flow and spatial development of dynamic chaos in the boundary layer. JETP Lett. 13(16), 987 (1987)

    Google Scholar 

  18. Priymak, V.G.: Splitting dynamics of coherent structures in a transitional round-pipe flow. Dokl. Phys. 58(10), 457–465 (2013)

    Article  ADS  Google Scholar 

  19. Davidson, P.A.: Turbulence, p. 678. Oxford University Press, Oxford (2004)

    Google Scholar 

  20. Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)

    Google Scholar 

  21. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, vol. 1 and 2. MIT Press, Cambridge (1971)

    Google Scholar 

  22. Schlichting, H.: Boundary-Layer Theory, 6th edn. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  23. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/cbo9780511840531

    Book  MATH  Google Scholar 

  24. Dmitrenko, A.V.: Fundamentals of heat and mass transfer and hydrodynamics of single- phase and two-phase media.Criterial integral statistical methods and direct numerical simulation. (Galleya print: Moscow) 398p (2008). http://search.rsl.ru/ru/catalog/record/6633402

  25. Dmitrenko, A.V.: Calculation of pressure pulsations for a turbulent heterogeneous medium. Dokl. Phys. 52(7), 384–387 (2007). https://doi.org/10.1134/s1028335807120166

    Article  ADS  MATH  Google Scholar 

  26. Dmitrenko, A.V.: Calculation of the boundary layer of a two-phase medium. High Temp. 40(5), 706–715 (2002). https://doi.org/10.1023/A:1020436720213

    Article  Google Scholar 

  27. Dmitrenko, A.V.: Heat and mass transfer and friction in injection to a supersonic region of the Laval nozzle. Heat Transf. Res. 31(6–8), 338–399 (2000). https://doi.org/10.1615/HeatTrasRes.v31.i6-8.30

    Article  Google Scholar 

  28. Dmitrenko, A.V.: Film cooling in nozzles with large geometric expansion using method of integral relation and second moment closure model for turbulence. In: 33th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit AIAA Paper 97-2911 (1997). https://doi.org/10.2514/6.1997-2911

  29. Heisenberg, W.: Zur statistischen Theorie der Turbulenz. Zeit. f. Phys. 124, 628–657 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  30. Starikov, F.A., Kochemasov, G.G., Kulikov, S.M., Manachinsky, A.N., Maslov, N.V., Ogorodnikov, A.V., Soldatenkov, I.S.: Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor. Opt. Lett. 32(16), 2291–2293 (2007). https://doi.org/10.1364/OL.32.002291

    Article  ADS  Google Scholar 

  31. Starikov, F.A., Khokhlov, S.V.: Phase correction of laser radiation with the use of adaptive optical systems at the Russian Federal Nuclear Center - Institute of Experimental Physics // Optoelectron. Instr. Data Proc. 48(2), 134–141 (2012)

    Google Scholar 

  32. Dmitrenko, A.V.: Equivalence of measures and stochastic equations for turbulent flows. Dokl. Phys. 58(6), 228–235 (2013). https://doi.org/10.1134/s1028335813060098

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Dmitrenko, A.V.: Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions-Equivalence of Measures. Scientific Discovery Diploma No. 458 registration No. 583 of December 2 (2013)

  34. Dmitrenko, A.V.: Theory of Equivalent Measures and Sets with Repeating Denumerable Fractal Elements. Stochastic Thermodynamics and Turbulence. Determinacy–Randomness Correlator [in Russian] (Galleya-Print: Moscow) 226p (2013). https://search.rsl.ru/ru/record/01006633402

  35. Dmitrenko, A.V.: Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for nonisothermal flows. Adv. Stud. Theor. Phys. 8(25), 1101–1111 (2014). https://doi.org/10.12988/astp.2014.49131

    Article  Google Scholar 

  36. Dmitrenko, A.V.: Analytical estimation of velocity and temperature fields in a circular tube on the basis of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 88(6), 1569–1576 (2015). https://doi.org/10.1007/s10891-015-1344-x

    Article  Google Scholar 

  37. Dmitrenko, A.V.: Determination of critical Reynolds numbers for nonisothermal flows using stochastic theories of turbulence and equivalent measures. Heat Transf. Res. 47(1), 41–48 (2016). https://doi.org/10.1615/HeatTransRes

    Article  MathSciNet  Google Scholar 

  38. Dmitrenko, A.V.: The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate. Int. J. Fluid Mech. Res. 43(2), 182–187 (2016). https://doi.org/10.1615/InterJFluidMechRes.v43.i2

    Article  Google Scholar 

  39. Dmitrenko, A.V.: An estimation of turbulent vector fields, spectral and correlation functions depending on initial turbulence based on stochastic equations. The Landau fractal equation. Int. J. Fluid Mech. Res. 43(3), 82–91 (2016). https://doi.org/10.1615/InterJFluidMechRes.v43.i3

    Article  Google Scholar 

  40. Dmitrenko, A.V.: Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow. Contin. Mech. Thermodyn. 29(1), 1–9 (2017). https://doi.org/10.1007/s00161-016-0514-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Dmitrenko, A.V.: Analytical determination of the heat transfer coefficient for gas, liquid and liquidmetal flows in the tube based on stochastic equations and equivalence of measures for continuum. Contin. Mech. Thermodyn. 29(6), 1197–1205 (2017). https://doi.org/10.1007/s00161-017-0566-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Dmitrenko, A.V.: Determination of the coefficients of heat transfer and friction in supercritical-pressure nuclear reactors with account of the intensity and scale of flow turbulence on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 90(6), 1288–1294 (2017). https://doi.org/10.1007/s10891-017-1685-8

    Article  MathSciNet  Google Scholar 

  43. Dmitrenko, A.V.: Results of investigations of non-isothermal turbulent flows based on stochastic equations of the continuum and equivalence of measures. IOP Conf. Ser. J. Phys. Conf. Ser. 1009, 012017 (2018). https://doi.org/10.1088/1742-6596/1009/1/012017

    Article  Google Scholar 

  44. Dmitrenko, A.V.: The stochastic theory of the turbulence. IOP Conf. Ser. Mater. Sci. Eng. 468, 012021 (2018). https://doi.org/10.1088/1757-899X/468/1/01202

    Article  Google Scholar 

  45. Dmitrenko, A.V.: Determination of the correlation dimension of an attractor in a pipe based on the theory of stochastic equations and equivalence of measures J. of Phys.:Conf. Series 1250 (2019). https://doi.org/10.1088/1742-6596/1250/1/012001

  46. Dmitrenko, A.V.: The construction of the portrait of the correlation dimension of an attractor in the boundary layer of Earth’s atmosphere J. of Phys.:Conf. Series 1337 (2019). https://doi.org/10.1088/1742-6596/1291/1/012001

  47. Dmitrenko, A.V.: The correlation dimension of an attarctor determined on the base of the theory of equivalence of measures and stochastic equations for continuum. Contin. Mech. Thermod. 32(1), 63–74 (2020). https://doi.org/10.1007/s00161-019-00784-0

    Article  MathSciNet  Google Scholar 

  48. Dmitrenko, A.V.: Uncertainty relation in turbulent shear flow based on stochastic equations of the continuum and the equivalence of measures Contin. Mech. Thermod. 32(1), 161–171 (2020). https://doi.org/10.1007/s00161-019-00792-0

    Article  MathSciNet  Google Scholar 

  49. Dmitrenko, A.V.: Formation of the turbulence spectrum in the inertial interval on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 93(1), 122–127 (2020). https://doi.org/10.1007/s10891-017-1685-8

    Article  MathSciNet  Google Scholar 

  50. Klebanoff, P.S.: Characteristics of turbulence in boundary layer with zero pressure gradient. TN Report 1247 NACA (1954)

Download references

Acknowledgements

This work was supported by the program of increasing the competitive ability of National Research Nuclear University MEPhI (agreement with the Ministry of Education and Science of the Russian Federation of August 27, 2013, Project No. 02.a03.21.0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dmitrenko.

Additional information

Communicated by Andreas Öchsner.

This article is dedicated to the memory of Academician N.A. Anfimov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrenko, A.V. Theoretical solutions for spectral function of the turbulent medium based on the stochastic equations and equivalence of measures. Continuum Mech. Thermodyn. 33, 603–610 (2021). https://doi.org/10.1007/s00161-020-00890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00890-4

Navigation