Skip to main content
Log in

The uncertainty relation in the turbulent continuous medium

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

One of the key problems of continuum physics is the problem of determining the characteristics of disturbances, leading to chaos (turbulence) in the medium. Until now, the existing theories have not yielded results. In this paper, the uncertainty relation in the process of turbulence of a continuum medium is determined on the basis of stochastic equations and equivalence of measures. The uncertainty relation expresses the fact that there is not one vortex, but a family of vortices that have a single dependence of the space–energy similarity \(({E}\cdot {L}^{-{{a}}})\) = constant which are able to generate turbulence during the interaction with the main motion. The validity of the obtained uncertainty relation is confirmed by the satisfactory agreement of the obtained stochastic spectrum formulas with the experimental spectrum for turbulent flows in the pipe and on the flat plate. This family of vortexes has a formula of spectrum E(k) depending on wave numbers k in form \(E(k) \sim k^ n\). For the flow in the boundary layer on the flat plate \(n = -1.5\) and for the flow in the round tube \(n = -1.29 \div -1.4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolmogorov, A.N.: About the entropy per time unit as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124(4), 754–755 (1959)

    MathSciNet  MATH  Google Scholar 

  2. Kolmogorov, A.N.: Mathematical models of turbulent motion of an incompressible viscous fluid. Usp. Mat. Nauk. 59(1(355)), 5–10 (2004)

    Article  MathSciNet  Google Scholar 

  3. Landau, L.D.: Toward the problem of turbulence. Dokl. Akad. Nauk SSSR 44, 339–342 (1944)

    Google Scholar 

  4. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963). https://doi.org/10.1175/1520-0469

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971). https://doi.org/10.1007/bf01646553. also 23, 343–344

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Feigenbaum, M.: The transition to aperiodic behavior in turbulent sets. Commun. Math. Phys. 77(1), 65–86 (1980)

    Article  ADS  Google Scholar 

  7. Klimontovich, Y.L.: Problems of the statistical theory of open sets: criteria of the relative degree of the ordering of states in the self-organization processes. Usp. Fiz. Nauk 158(1), 59–91 (1989). https://doi.org/10.1070/pu1999v042n01abeh000445

    Article  MathSciNet  Google Scholar 

  8. Haller, G.: Chaos Near Resonance. Springer, Berlin (1999). https://doi.org/10.1007/978-1-4612-1508-0

    Book  MATH  Google Scholar 

  9. Orzag, S.A., Kells, L.C.: Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 96(1), 159–205 (1980). https://doi.org/10.1017/s0022112080002066/

    Article  ADS  MATH  Google Scholar 

  10. Priymak, V.G.: Splitting dynamics of coherent structures in a transitional round-tube flow. Dokl. Phys. 58(10), 457–465 (2013)

    Article  ADS  Google Scholar 

  11. Mayer, C.S.J., von Terzi, D.A., Fasel, H.F.: Direct numerical simulation of investigation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 5–42 (2011)

    Article  ADS  Google Scholar 

  12. Newton, P.K.: The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere. J. Fluid Mech. 786, 1–4 (2016). January

    Article  ADS  MathSciNet  Google Scholar 

  13. Barkley, D.: Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, 1–80 (2016). https://doi.org/10.1017/jfm.2016.465

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fursikov, A.V.: Moment theory for Navier–Stokes equations with a random right-hand side. Izv. Ross. Akad. Nauk 56(6), 1273–1315 (1992)

    Google Scholar 

  15. Dmitrenko, A.V.: Equivalence of measures and stochastic equations for turbulent flows. Dokl. Phys. 58(6), 228–235 (2013). https://doi.org/10.1134/s1028335813060098

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dmitrenko, A.V.: Calculation of pressure pulsations for a turbulent heterogeneous medium. Dokl. Phys. 52(7), 384–387 (2007). https://doi.org/10.1134/s1028335807120166

    Article  ADS  MATH  Google Scholar 

  17. Dmitrenko, A.V.: Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for nonisothermal flows. Adv. Stud. Theor. Phys. 8(25), 1101–1111 (2014). https://doi.org/10.12988/astp.2014.49131

    Article  Google Scholar 

  18. Dmitrenko, A.V.: Analytical estimation of velocity and temperature fields in a circular tube on the basis of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 88(6), 1569–1576 (2015). https://doi.org/10.1007/s10891-015-1344-x

    Article  Google Scholar 

  19. Dmitrenko, A.V.: Determination of critical Reynolds numbers for nonisothermal flows using stochastic theories of turbulence and equivalent measures. Heat Transf. Res. 47(1), 41–48 (2016). https://doi.org/10.1615/HeatTransRes

    Article  MathSciNet  Google Scholar 

  20. Dmitrenko, A.V.: The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate. Int. J. Fluid Mech. Res. 43(2), 182–187 (2016). https://doi.org/10.1615/InterJFluidMechRes.v43.i2

    Article  Google Scholar 

  21. Dmitrenko, A.V.: An estimation of turbulent vector fields, spectral and correlation functions depending on initial turbulence based on stochastic equations. The Landau fractal equation. Int. J. Fluid Mech. Res. 43(3), 82–91 (2016). https://doi.org/10.1615/InterJFluidMechRes.v43.i3

    Article  Google Scholar 

  22. Dmitrenko, Artur V.: Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow. Contin. Mech. Thermodyn. 29(1), 1–9 (2017). https://doi.org/10.1007/s00161-016-0514-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dmitrenko, Artur V.: Analytical determination of the heat transfer coefficient for gas, liquid and liquid metal flows in the tube based on stochastic equations and equivalence of measures for continuum. Contin. Mech. Thermodyn. 29(6), 1197–1205 (2017). https://doi.org/10.1007/s00161-017-0566-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Dmitrenko, Artur V.: Determination of the coefficients of heat transfer and friction in supercritical-pressure nuclear reactors with account of the intensity and scale of flow turbulence on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 90(6), 1288–1294 (2017). https://doi.org/10.1007/s10891-017-1685-8

    Article  MathSciNet  Google Scholar 

  25. Dmitrenko, A.V.: Results of investigations of non-isothermal turbulent flows based on stochastic equations of the continuum and equivalence of measures. IOP Conf. Series: J. Phys.: Conf. Ser. 1009, 012017 (2018). https://doi.org/10.1088/1742-6596/1009/1/012017

    Article  Google Scholar 

  26. Dmitrenko, A.V.: Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions-Equivalence of Measures Scientific Discovery Diploma No. 458 registration No. 583 of December 2 (2013)

  27. Dmitrenko, A. V.: Theory of equivalent measures and sets with repeating denumerable fractal elements. Stochastic thermodynamics and turbulence. Determinacy–Randomness Correlator (Galleya-Print: Moscow) (2013) (in Russian). https://search.rsl.ru/ru/record/01006633402

  28. Dmitrenko, A. V.: Fundamentals of heat and mass transfer and hydrodynamics of single-phase and two-phase media. Criterial integral statistical methods and direct numerical simulation (Galleya print: Moscow) (2008). http://search.rsl.ru/ru/catalog/record/6633402

  29. Dmitrenko, A.V.: The stochastic theory of the turbulence. IOP Conf. Ser.: Mater. Sci. Eng. 468, 012021 (2018). https://doi.org/10.1088/1757-899X/468/1/01202

    Article  Google Scholar 

  30. Davidson, P.A.: Turbulence, p. 678. Oxford University Press, Oxford (2004)

    Google Scholar 

  31. Schlichting, H.: Boundary-Layer Theory, 6th edn. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  32. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics. M.I.T Press, Cambridge (1971)

    Google Scholar 

  33. Hinze, J.O.: Turbulence. McGraw-Hill, New York (1975)

    Google Scholar 

  34. Lauffer, J.: The structure of turbulence in fully developed pipe flow. TN Report 2954 NACA (1953)

  35. Klebanoff, P.S.: Characteristics of turbulence in boundary layer with zero pressure gradient. TN Report 1247 NACA (1954)

Download references

Acknowledgements

This work was supported by the program of increasing the competitive ability of National Research Nuclear University MEPhI (agreement with the Ministry of Education and Science of the Russian Federation of August 27, 2013, Project No. 02.a03.21.0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur V. Dmitrenko.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrenko, A.V. The uncertainty relation in the turbulent continuous medium. Continuum Mech. Thermodyn. 32, 161–171 (2020). https://doi.org/10.1007/s00161-019-00792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00792-0

Keywords

Navigation