Skip to main content
Log in

Mechanisms of meiotic drive in symmetric and asymmetric meiosis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Meiotic drive, the non-Mendelian transmission of chromosomes to the next generation, functions in asymmetric or symmetric meiosis across unicellular and multicellular organisms. In asymmetric meiosis, meiotic drivers act to alter a chromosome’s spatial position in a single egg. In symmetric meiosis, meiotic drivers cause phenotypic differences between gametes with and without the driver. Here we discuss existing models of meiotic drive, highlighting the underlying mechanisms and regulation governing systems for which the most is known. We focus on outstanding questions surrounding these examples and speculate on how new meiotic drive systems evolve and how to detect them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hurst GD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2(8):597–606. https://doi.org/10.1038/35084545

    Article  CAS  PubMed  Google Scholar 

  2. Werren JH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci USA 108(Suppl 2):10863–10870. https://doi.org/10.1073/pnas.1102343108

    Article  PubMed  Google Scholar 

  3. Agren JA, Clark AG (2018) Selfish genetic elements. PLoS Genet 14(11):e1007700. https://doi.org/10.1371/journal.pgen.1007700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hurst LD (2019) A century of bias in genetics and evolution. Heredity (Edinb) 123(1):33–43. https://doi.org/10.1038/s41437-019-0194-2

    Article  Google Scholar 

  5. Helleu Q, Gerard PR, Montchamp-Moreau C (2014) Sex chromosome drive. Cold Spring Harb Perspect Biol 7(2):a017616. https://doi.org/10.1101/cshperspect.a017616

    Article  CAS  PubMed  Google Scholar 

  6. Courret C, Chang CH, Wei KH, Montchamp-Moreau C, Larracuente AM (2019) Meiotic drive mechanisms: lessons from Drosophila. Proc Biol Sci 286(1913):20191430. https://doi.org/10.1098/rspb.2019.1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557. https://doi.org/10.1146/annurev.ge.25.120191.002455

    Article  CAS  PubMed  Google Scholar 

  8. Bravo Nunez MA, Nuckolls NL, Zanders SE (2018) Genetic villains: killer meiotic drivers. Trends Genet 34(6):424–433. https://doi.org/10.1016/j.tig.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18(24):1986–1992. https://doi.org/10.1016/j.cub.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  10. Akera T, Chmatal L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, Janke C, Schultz RM, Lampson MA (2017) Spindle asymmetry drives non-Mendelian chromosome segregation. Science 358(6363):668–672. https://doi.org/10.1126/science.aan0092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu T, Lane SIR, Morgan SL, Jones KT (2018) Spindle tubulin and MTOC asymmetries may explain meiotic drive in oocytes. Nat Commun 9(1):2952. https://doi.org/10.1038/s41467-018-05338-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chmatal L, Gabriel SI, Mitsainas GP, Martinez-Vargas J, Ventura J, Searle JB, Schultz RM, Lampson MA (2014) Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol 24(19):2295–2300. https://doi.org/10.1016/j.cub.2014.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwata-Otsubo A, Dawicki-McKenna JM, Akera T, Falk SJ, Chmatal L, Yang K, Sullivan BA, Schultz RM, Lampson MA, Black BE (2017) Expanded satellite repeats amplify a discrete CENP-A nucleosome assembly site on chromosomes that drive in female meiosis. Curr Biol 27(15):2365-2373 e2368. https://doi.org/10.1016/j.cub.2017.06.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei KH, Reddy HM, Rathnam C, Lee J, Lin D, Ji S, Mason JM, Clark AG, Barbash DA (2017) A pooled sequencing approach identifies a candidate meiotic driver in Drosophila. Genetics 206(1):451–465. https://doi.org/10.1534/genetics.116.197335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fishman L, Saunders A (2008) Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322(5907):1559–1562. https://doi.org/10.1126/science.1161406

    Article  CAS  PubMed  Google Scholar 

  16. Fishman L, Willis JH (2005) A novel meiotic drive locus almost completely distorts segregation in mimulus (monkeyflower) hybrids. Genetics 169(1):347–353. https://doi.org/10.1534/genetics.104.032789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buckler EST, Phelps-Durr TL, Buckler CS, Dawe RK, Doebley JF, Holtsford TP (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153(1):415–426

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dawe RK, Lowry EG, Gent JI, Stitzer MC, Swentowsky KW, Higgins DM, Ross-Ibarra J, Wallace JG, Kanizay LB, Alabady M, Qiu W, Tseng KF, Wang N, Gao Z, Birchler JA, Harkess AE, Hodges AL, Hiatt EN (2018) A Kinesin-14 motor activates neocentromeres to promote meiotic drive in maize. Cell 173(4):839-850 e818. https://doi.org/10.1016/j.cell.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  19. Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11(7):1227–1238. https://doi.org/10.1105/tpc.11.7.1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu HG, Hiatt EN, Chan A, Sweeney M, Dawe RK (1997) Neocentromere-mediated chromosome movement in maize. J Cell Biol 139(4):831–840. https://doi.org/10.1083/jcb.139.4.831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akera T, Trimm E, Lampson MA (2019) Molecular strategies of meiotic cheating by selfish centromeres. Cell 178(5):1132-1144 e1110. https://doi.org/10.1016/j.cell.2019.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16(4):335–344. https://doi.org/10.1038/ncb2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jain M, Olsen HE, Turner DJ, Stoddart D, Bulazel KV, Paten B, Haussler D, Willard HF, Akeson M, Miga KH (2018) Linear assembly of a human centromere on the Y chromosome. Nat Biotechnol 36(4):321–323. https://doi.org/10.1038/nbt.4109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Langley SA, Miga KH, Karpen GH, Langley CH (2019) Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. Elife. https://doi.org/10.7554/eLife.42989

    Article  PubMed  PubMed Central  Google Scholar 

  25. Didion JP, Morgan AP, Clayshulte AM, McMullan RC, Yadgary L, Petkov PM, Bell TA, Gatti DM, Crowley JJ, Hua K, Aylor DL, Bai L, Calaway M, Chesler EJ, French JE, Geiger TR, Gooch TJ, Garland T Jr, Harrill AH, Hunter K, McMillan L, Holt M, Miller DR, O’Brien DA, Paigen K, Pan W, Rowe LB, Shaw GD, Simecek P, Sullivan PF, Svenson KL, Weinstock GM, Threadgill DW, Pomp D, Churchill GA, Pardo-Manuel de Villena F (2015) A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. PLoS Genet 11(2):e1004850. https://doi.org/10.1371/journal.pgen.1004850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Didion JP, Morgan AP, Yadgary L, Bell TA, McMullan RC, Ortiz de Solorzano L, Britton-Davidian J, Bult CJ, Campbell KJ, Castiglia R, Ching YH, Chunco AJ, Crowley JJ, Chesler EJ, Forster DW, French JE, Gabriel SI, Gatti DM, Garland T Jr, Giagia-Athanasopoulou EB, Gimenez MD, Grize SA, Gunduz I, Holmes A, Hauffe HC, Herman JS, Holt JM, Hua K, Jolley WJ, Lindholm AK, Lopez-Fuster MJ, Mitsainas G, da Luz MM, McMillan L, Ramalhinho Mda G, Rehermann B, Rosshart SP, Searle JB, Shiao MS, Solano E, Svenson KL, Thomas-Laemont P, Threadgill DW, Ventura J, Weinstock GM, Pomp D, Churchill GA, Pardo-Manuel de Villena F (2016) R2d2 drives selfish sweeps in the house mouse. Mol Biol Evol 33(6):1381–1395. https://doi.org/10.1093/molbev/msw036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agulnik SI, Agulnik AI, Ruvinsky AO (1990) Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genet Res 55(2):97–100. https://doi.org/10.1017/s0016672300025325

    Article  CAS  PubMed  Google Scholar 

  28. Pardo-Manual de Villena F, Slamka C, Fonseca M, Naumova AK, Paquette J, Pannunzio P, Smith M, Verner A, Morgan K, Sapienza C (1996) Transmission-ratio distortion through F1 females at chromosome 11 loci linked to Om in the mouse DDK syndrome. Genetics 142(4):1299–1304

    CAS  PubMed  Google Scholar 

  29. Pardo-Manuel de Villena F, Naumova AK, Verner AE, Jin WH, Sapienza C (1997) Confirmation of maternal transmission ratio distortion at Om and direct evidence that the maternal and paternal “DDK syndrome” genes are linked. Mamm Genome 8(9):642–646. https://doi.org/10.1007/s003359900529

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Zhao X, Cheng K, Du H, Ouyang Y, Chen J, Qiu S, Huang J, Jiang Y, Jiang L, Ding J, Wang J, Xu C, Li X, Zhang Q (2012) A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337(6100):1336–1340. https://doi.org/10.1126/science.1223702

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, Wang L, Xu C, Li X, Xue Y, Xia M, Ji Q, Lu J, Xu M, Zhang Q (2008) A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA 105(32):11436–11441. https://doi.org/10.1073/pnas.0804761105

    Article  PubMed  Google Scholar 

  32. Rhoades MM, Dempsey E (1957) Further studies on preferential segregation. Coop. Maize Genetics Cooperation Newsletter, Maize Genetics

    Google Scholar 

  33. Kanizay LB, Albert PS, Birchler JA, Dawe RK (2013) Intragenomic conflict between the two major knob repeats of maize. Genetics 194(1):81–89. https://doi.org/10.1534/genetics.112.148882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hiatt EN, Kentner EK, Dawe RK (2002) Independently regulated neocentromere activity of two classes of tandem repeat arrays. Plant Cell 14(2):407–420. https://doi.org/10.1105/tpc.010373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dawe RK, Cande WZ (1996) Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc Natl Acad Sci USA 93(16):8512–8517. https://doi.org/10.1073/pnas.93.16.8512

    Article  CAS  PubMed  Google Scholar 

  36. Morales CR, Lefrancois S, Chennathukuzhi V, El-Alfy M, Wu X, Yang J, Gerton GL, Hecht NB (2002) A TB-RBP and Ter ATPase complex accompanies specific mRNAs from nuclei through the nuclear pores and into intercellular bridges in mouse male germ cells. Dev Biol 246(2):480–494. https://doi.org/10.1006/dbio.2002.0679

    Article  CAS  PubMed  Google Scholar 

  37. Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD (1989) Genetically haploid spermatids are phenotypically diploid. Nature 337(6205):373–376. https://doi.org/10.1038/337373a0

    Article  CAS  PubMed  Google Scholar 

  38. Ventela S, Toppari J, Parvinen M (2003) Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell 14(7):2768–2780. https://doi.org/10.1091/mbc.e02-10-0647

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fawcett DW, Ito S, Slautterback D (1959) The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophys Biochem Cytol 5(3):453–460. https://doi.org/10.1083/jcb.5.3.453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caldwell KA, Handel MA (1991) Protamine transcript sharing among postmeiotic spermatids. Proc Natl Acad Sci USA 88(6):2407–2411. https://doi.org/10.1073/pnas.88.6.2407

    Article  CAS  PubMed  Google Scholar 

  41. Umehara T, Tsujita N, Shimada M (2019) Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm. PLoS Biol 17(8):e3000398. https://doi.org/10.1371/journal.pbio.3000398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng Y, Deng X, Martin-DeLeon PA (2001) Lack of sharing of Spam1 (Ph-20) among mouse spermatids and transmission ratio distortion. Biol Reprod 64(6):1730–1738. https://doi.org/10.1095/biolreprod64.6.1730

    Article  CAS  PubMed  Google Scholar 

  43. Veron N, Bauer H, Weisse AY, Luder G, Werber M, Herrmann BG (2009) Retention of gene products in syncytial spermatids promotes non-Mendelian inheritance as revealed by the t complex responder. Genes Dev 23(23):2705–2710. https://doi.org/10.1101/gad.553009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Butler A, Gordon RE, Gatt S, Schuchman EH (2007) Sperm abnormalities in heterozygous acid sphingomyelinase knockout mice reveal a novel approach for the prevention of genetic diseases. Am J Pathol 170(6):2077–2088. https://doi.org/10.2353/ajpath.2007.061002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhutani K, Stansifer K, Ticau S, Bojic L, Villani C, Slisz J, Cremers C, Roy C, Donovan J, Fiske B, Friedman R (2019) Widespread haploid-based gene expression in mammalian spermatogenesis associated with frequent selective sweeps and evolutionary conflict. Biorxiv 4:120–134

    Google Scholar 

  46. Larracuente AM, Presgraves DC (2012) The selfish segregation distorter gene complex of Drosophila melanogaster. Genetics 192(1):33–53. https://doi.org/10.1534/genetics.112.141390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dalstra HJ, Swart K, Debets AJ, Saupe SJ, Hoekstra RF (2003) Sexual transmission of the [Het-S] prion leads to meiotic drive in Podospora anserina. Proc Natl Acad Sci USA 100(11):6616–6621. https://doi.org/10.1073/pnas.1030058100

    Article  CAS  PubMed  Google Scholar 

  48. Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R (2012) The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 10(12):e1001451. https://doi.org/10.1371/journal.pbio.1001451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dalstra HJ, van der Zee R, Swart K, Hoekstra RF, Saupe SJ, Debets AJ (2005) Non-mendelian inheritance of the HET-s prion or HET-s prion domains determines the het-S spore killing system in Podospora anserina. Fungal Genet Biol 42(10):836–847. https://doi.org/10.1016/j.fgb.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  50. Merrill C, Bayraktaroglu L, Kusano A, Ganetzky B (1999) Truncated RanGAP encoded by the segregation distorter locus of Drosophila. Science 283(5408):1742–1745. https://doi.org/10.1126/science.283.5408.1742

    Article  CAS  PubMed  Google Scholar 

  51. Kusano A, Staber C, Ganetzky B (2001) Nuclear mislocalization of enzymatically active RanGAP causes segregation distortion in Drosophila. Dev Cell 1(3):351–361. https://doi.org/10.1016/s1534-5807(01)00042-9

    Article  CAS  PubMed  Google Scholar 

  52. Brittnacher JG, Ganetzky B (1989) On the components of segregation distortion in Drosophila melanogaster. IV. Construction and analysis of free duplications for the Responder locus. Genetics 121(4):739–750

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lyttle TW (1989) The effect of novel chromosome position and variable dose on the genetic behavior of the Responder (Rsp) element of the segregation distorter (SD) system of Drosophila melanogaster. Genetics 121(4):751–763

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu CI, Lyttle TW, Wu ML, Lin GF (1988) Association between a satellite DNA sequence and the responder of segregation distorter in D. melanogaster. Cell 54(2):179–189. https://doi.org/10.1016/0092-8674(88)90550-8

    Article  CAS  PubMed  Google Scholar 

  55. Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660. https://doi.org/10.1146/annurev.cellbio.15.1.607

    Article  CAS  PubMed  Google Scholar 

  56. Kusano A, Staber C, Ganetzky B (2002) Segregation distortion induced by wild-type RanGAP in Drosophila. Proc Natl Acad Sci USA 99(10):6866–6870. https://doi.org/10.1073/pnas.102165099

    Article  CAS  PubMed  Google Scholar 

  57. Hauschteck-Jungen E, Hartl DL (1982) Defective Histone Transition during Spermiogenesis in Heterozygous segregation distorter Males of D. Melanogaster. Genetics 101(1):57–69

    Article  CAS  Google Scholar 

  58. Seto AG, Kingston RE, Lau NC (2007) The coming of age for piwi proteins. Mol Cell 26(5):603–609

    Article  CAS  Google Scholar 

  59. Nagao A, Mituyama T, Huang H, Chen D, Siomi MC, Siomi H (2010) Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA (New York, NY) 16(12):2503–2515. https://doi.org/10.1261/rna.2270710

    Article  CAS  Google Scholar 

  60. Gell SL, Reenan RA (2013) Mutations to the piRNA pathway component aubergine enhance meiotic drive of segregation distorter in Drosophila melanogaster. Genetics 193(3):771–784. https://doi.org/10.1534/genetics.112.147561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katz DF, Erickson RP, Nathanson M (1979) Beat frequency is bimodally distributed in spermatozoa from T/t12 mice. J Exp Zool 210(3):529–535. https://doi.org/10.1002/jez.1402100316

    Article  CAS  PubMed  Google Scholar 

  62. Olds-Clarke P, Johnson LR (1993) t haplotypes in the mouse compromise sperm flagellar function. Dev Biol 155(1):14–25. https://doi.org/10.1006/dbio.1993.1002

    Article  CAS  PubMed  Google Scholar 

  63. Bauer H, Schindler S, Charron Y, Willert J, Kusecek B, Herrmann BG (2012) The nucleoside diphosphate kinase gene Nme3 acts as quantitative trait locus promoting non-Mendelian inheritance. PLoS Genet 8(3):e1002567. https://doi.org/10.1371/journal.pgen.1002567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bauer H, Veron N, Willert J, Herrmann BG (2007) The t-complex-encoded guanine nucleotide exchange factor Fgd2 reveals that two opposing signaling pathways promote transmission ratio distortion in the mouse. Genes Dev 21(2):143–147. https://doi.org/10.1101/gad.414807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bauer H, Willert J, Koschorz B, Herrmann BG (2005) The t complex-encoded GTPase-activating protein Tagap1 acts as a transmission ratio distorter in mice. Nat Genet 37(9):969–973. https://doi.org/10.1038/ng1617

    Article  CAS  PubMed  Google Scholar 

  66. Charron Y, Willert J, Lipkowitz B, Kusecek B, Herrmann BG, Bauer H (2019) Two isoforms of the RAC-specific guanine nucleotide exchange factor TIAM2 act oppositely on transmission ratio distortion by the mouse t-haplotype. PLoS Genet 15(2):e1007964. https://doi.org/10.1371/journal.pgen.1007964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Herrmann BG, Koschorz B, Wertz K, McLaughlin KJ, Kispert A (1999) A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature 402(6758):141–146. https://doi.org/10.1038/45970

    Article  CAS  PubMed  Google Scholar 

  68. Rhoades NA, Harvey AM, Samarajeewa DA, Svedberg J, Yusifov A, Abusharekh A, Manitchotpisit P, Brown DW, Sharp KJ, Rehard DG, Peters J, Ostolaza-Maldonado X, Stephenson J, Shiu PKT, Johannesson H, Hammond TM (2019) Identification of rfk-1, a meiotic driver undergoing RNA editing in neurospora. Genetics 212(1):93–110. https://doi.org/10.1534/genetics.119.302122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Turner BC, Perkins DD (1979) Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. Genetics 93(3):587–606

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hammond TM, Rehard DG, Xiao H, Shiu PK (2012) Molecular dissection of Neurospora Spore killer meiotic drive elements. Proc Natl Acad Sci USA 109(30):12093–12098. https://doi.org/10.1073/pnas.1203267109

    Article  PubMed  Google Scholar 

  71. Grognet P, Lalucque H, Malagnac F, Silar P (2014) Genes that bias Mendelian segregation. PLoS Genet 10(5):e1004387. https://doi.org/10.1371/journal.pgen.1004387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vogan AA, Ament-Velasquez SL, Granger-Farbos A, Svedberg J, Bastiaans E, Debets AJ, Coustou V, Yvanne H, Clave C, Saupe SJ, Johannesson H (2019) Combinations of Spok genes create multiple meiotic drivers in Podospora. Elife. https://doi.org/10.7554/eLife.46454

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nuckolls NL, Bravo Nunez MA, Eickbush MT, Young JM, Lange JJ, Yu JS, Smith GR, Jaspersen SL, Malik HS, Zanders SE (2017) wtf genes are prolific dual poison-antidote meiotic drivers. Elife. https://doi.org/10.7554/eLife.26033

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bravo Nunez MA, Lange JJ, Zanders SE (2018) A suppressor of a wtf poison-antidote meiotic driver acts via mimicry of the driver’s antidote. PLoS Genet 14(11):e1007836. https://doi.org/10.1371/journal.pgen.1007836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bravo Nunez MA, Sabbarini IM, Eickbush MT, Liang Y, Lange JJ, Kent AM, Zanders SE (2020) Dramatically diverse Schizosaccharomyces pombe wtf meiotic drivers all display high gamete-killing efficiency. PLoS Genet 16(2):e1008350. https://doi.org/10.1371/journal.pgen.1008350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu W, Jiang ZD, Suo F, Zheng JX, He WZ, Du LL (2017) A large gene family in fission yeast encodes spore killers that subvert Mendel’s law. Elife. https://doi.org/10.7554/eLife.26057

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zanders SE, Eickbush MT, Yu JS, Kang JW, Fowler KR, Smith GR, Malik HS (2014) Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. Elife 3:e02630. https://doi.org/10.7554/eLife.02630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu X, Zhao Z, Zheng X, Zhou J, Kong W, Wang P, Bai W, Zheng H, Zhang H, Li J, Liu J, Wang Q, Zhang L, Liu K, Yu Y, Guo X, Wang J, Lin Q, Wu F, Ren Y, Zhu S, Zhang X, Cheng Z, Lei C, Liu S, Liu X, Tian Y, Jiang L, Ge S, Wu C, Tao D, Wang H, Wan J (2018) A selfish genetic element confers non-Mendelian inheritance in rice. Science 360(6393):1130–1132. https://doi.org/10.1126/science.aar4279

    Article  CAS  PubMed  Google Scholar 

  79. Chesley P, Dunn LC (1936) The inheritance of taillessness (Anury) in the house mouse. Genetics 21(5):525–536

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schimenti J (2000) Segregation distortion of mouse t haplotypes the molecular basis emerges. Trends Genet 16(6):240–243. https://doi.org/10.1016/s0168-9525(00)02020-5

    Article  CAS  PubMed  Google Scholar 

  81. Schimenti J, Vold L, Socolow D, Silver LM (1987) An unstable family of large DNA elements in the center of the mouse t complex. J Mol Biol 194(4):583–594. https://doi.org/10.1016/0022-2836(87)90235-x

    Article  CAS  PubMed  Google Scholar 

  82. Nuckolls NL, Mok AC, Lange JJ, Yi K, Kandola TS, Hunn AM, McCroskey S, Snyder JL, Bravo Nunez MA, McClain ML, McKinney SA, Wood C, Halfmann R, Zanders SE (2020) The wtf4 meiotic driver utilizes controlled protein aggregation to generate selective cell death. biorXiv 16:13–54

    Google Scholar 

  83. Eickbush MT, Young JM, Zanders SE (2019) Killer meiotic drive and dynamic evolution of the wtf gene family. Mol Biol Evol 36(6):1201–1214. https://doi.org/10.1093/molbev/msz052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM, Manser A, Montchamp-Moreau C, Petrosyan VG, Pomiankowski A, Presgraves DC, Safronova LD, Sutter A, Unckless RL, Verspoor RL, Wedell N, Wilkinson GS, Price TAR (2016) The ecology and evolutionary dynamics of meiotic drive. Trends Ecol Evol 31(4):315–326. https://doi.org/10.1016/j.tree.2016.02.001

    Article  PubMed  Google Scholar 

  85. Meiklejohn CD, Tao Y (2010) Genetic conflict and sex chromosome evolution. Trends Ecol Evol 25(4):215–223. https://doi.org/10.1016/j.tree.2009.10.005

    Article  PubMed  Google Scholar 

  86. Lin CJ, Hu F, Dubruille R, Vedanayagam J, Wen J, Smibert P, Loppin B, Lai EC (2018) The hnRNP/RNAi pathway is essential to resolve intragenomic conflict in the drosophila male germline. Dev Cell 46(3):316–326

    Article  CAS  Google Scholar 

  87. Cocquet J, Ellis PJ, Mahadevaiah SK, Affara NA, Vaiman D, Burgoyne PS (2012) A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet 8(9):e1002900. https://doi.org/10.1371/journal.pgen.1002900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kruger AN, Brogley MA, Huizinga JL, Kidd JM, de Rooij DG, Hu YC, Mueller JL (2019) A Neofunctionalized X-Linked Ampliconic Gene Family Is Essential for Male Fertility and Equal Sex Ratio in Mice. Curr Biol 29(21):3699-3706 e3695. https://doi.org/10.1016/j.cub.2019.08.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Comptour A, Moretti C, Serrentino ME, Auer J, Ialy-Radio C, Ward MA, Toure A, Vaiman D, Cocquet J (2014) SSTY proteins co-localize with the post-meiotic sex chromatin and interact with regulators of its expression. FEBS J 281(6):1571–1584. https://doi.org/10.1111/febs.12724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Soh YQ, Alfoldi J, Pyntikova T, Brown LG, Graves T, Minx PJ, Fulton RS, Kremitzki C, Koutseva N, Mueller JL, Rozen S, Hughes JF, Owens E, Womack JE, Murphy WJ, Cao Q, de Jong P, Warren WC, Wilson RK, Skaletsky H, Page DC (2014) Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159(4):800–813. https://doi.org/10.1016/j.cell.2014.09.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ardlie KG (1998) Putting the brake on drive: meiotic drive of t haplotypes in natural populations of mice. Trends Genet 14(5):189–193. https://doi.org/10.1016/s0168-9525(98)01455-3

    Article  CAS  PubMed  Google Scholar 

  92. Silver LM (1993) The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends Genet 9(7):250–254. https://doi.org/10.1016/0168-9525(93)90090-5

    Article  CAS  PubMed  Google Scholar 

  93. Wong HWS, Holman L (2020) Fitness consequences of the selfish supergene Segregation Distorter. J Evol Biol 33(1):89–100

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge M. Arlt, D. Burke, S. Hammoud, S. Kalantry and J. Moran for their comments.

Funding

This work was supported by National Institutes of Health grants HD094736 to JLM, and T32GM007544 and a National Science Foundation Graduate Research Fellowship DGE 1256260 to ANK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob L. Mueller.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruger, A.N., Mueller, J.L. Mechanisms of meiotic drive in symmetric and asymmetric meiosis. Cell. Mol. Life Sci. 78, 3205–3218 (2021). https://doi.org/10.1007/s00018-020-03735-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03735-0

Keywords

Navigation