Skip to main content
Log in

A mini review on two-dimensional nanomaterial assembly

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) nanomaterials have attracted a great deal of attention since the discovery of graphene in 2004, due to their intriguing physicochemical properties and wide-ranging applications in catalysis, energy-related devices, electronics and optoelectronics. To maximize the potential of 2D nanomaterials for their technological applications, controlled assembly of 2D nanobulding blocks into integrated systems is critically needed. This mini review summarizes the reported strategies of 2D materials-based assembly into integrated functional nanostructures, from in-situ assembly method to post-synthesis assembly. The applications of 2D assembled integrated structures are also covered, especially in the areas of energy, electronics and sensing, and we conclude with discussion on the remaining challenges and potential directions in this emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol.2014, 9, 768–779.

    Article  CAS  Google Scholar 

  2. Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev.2014, 43, 6537–6554.

    Article  Google Scholar 

  3. Sun, Y. F.; Gao, S.; Lei, F. C.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res.2015, 48, 3–12.

    Article  CAS  Google Scholar 

  4. Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev.2015, 44, 623–636.

    Article  CAS  Google Scholar 

  5. Zhu, Y.; Peng, L. L.; Fang, Z. W.; Yan, C. S.; Zhang, X.; Yu, G. H. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater.2018, 30, 1706347.

    Article  CAS  Google Scholar 

  6. Peng, L. L.; Zhu, Y.; Chen, D. H.; Ruoff, R. S.; Yu, G. H. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater.2016, 6, 1600025.

    Article  CAS  Google Scholar 

  7. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science2015, 347, 1246501.

    Article  CAS  Google Scholar 

  8. Peng, L. L.; Zhu, Y.; Li, H. S.; Yu, G. H. Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices. Small2016, 12, 6183–6199.

    Article  CAS  Google Scholar 

  9. Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett.2013, 13, 2151–2157.

    Article  CAS  Google Scholar 

  10. Xiong, P.; Liu, B. R.; Teran, V.; Zhao, Y.; Peng, L. L.; Wang, X.; Yu, G. H. Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability. ACS Nano2014, 8, 8610–8616.

    Article  CAS  Google Scholar 

  11. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem.2013, 5, 263–275.

    Article  Google Scholar 

  12. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater.2017, 2, 17033.

    Article  CAS  Google Scholar 

  13. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev.2013, 113, 3766–3798.

    Article  CAS  Google Scholar 

  14. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano2013, 7, 2898–2926.

    Article  CAS  Google Scholar 

  15. Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A wearable transient pressure sensor made with mxene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett.2019, 19, 1143–1150.

    Article  CAS  Google Scholar 

  16. Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano2018, 12, 8670–8677.

    Article  CAS  Google Scholar 

  17. Zhu, Y.; Peng, L. L.; Chen, D. H.; Yu, G. H. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: Toward highrate alkali-ion-based electrochemical energy storage. Nano Lett.2016, 16, 742–747.

    Article  CAS  Google Scholar 

  18. Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev.2016, 45, 5541–5588.

    Article  CAS  Google Scholar 

  19. Yan, C. S.; Lv, C. D.; Zhu, Y.; Chen, G.; Sun, J. X.; Yu, G. H. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Adv. Mater.2017, 29, 1703909.

    Article  CAS  Google Scholar 

  20. Dickinson, E.; Leser, M. E. Food Colloids: Self-assembly and Material Science; RSC Publishing: Cambridge, UK, 2007.

    Book  Google Scholar 

  21. Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater.2014, 26, 2185–2204.

    Article  CAS  Google Scholar 

  22. Kong, B. S.; Geng, J. X.; Jung, H. T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun.2009, 2174–2176.

    Google Scholar 

  23. Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun.2013, 4, 2431.

    Article  CAS  Google Scholar 

  24. Shibata, T.; Fukuda, K.; Ebina, Y.; Kogure, T.; Sasaki, T. One-nanometer-thick seed layer of unilamellar nanosheets promotes oriented growth of oxide crystal films. Adv. Mater.2008, 20, 231–235.

    Article  CAS  Google Scholar 

  25. Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. 25th anniversary article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv. Mater.2013, 25, 6477–6512.

    Article  CAS  Google Scholar 

  26. Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q. M.; Yonamine, Y.; Wu, K. C. W.; Hill, J. P. Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution. Chem. Lett.2014, 43, 36–68.

    Article  CAS  Google Scholar 

  27. Hu, L. F.; Chen, M.; Fang, X. S.; Wu, L. M. Oil-water interfacial self-assembly: A novel strategy for nanofilm and nanodevice fabrication. Chem. Soc. Rev.2012, 41, 1350–1362.

    Article  CAS  Google Scholar 

  28. Wu, D. Q.; Zhang, F.; Liang, H. W.; Feng, X. L. Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets. Chem. Soc. Rev.2012, 41, 6160–6177.

    Article  CAS  Google Scholar 

  29. Mousty, C.; Prévot, V. Hybrid and biohybrid layered double hydroxides for electrochemical analysis. Anal. Bioanal. Chem.2013, 405, 3513–3523.

    Article  CAS  Google Scholar 

  30. Ma, R. Z.; Sasaki, T. Organization of artificial superlattices utilizing nanosheets as a building block and exploration of their advanced functions. Annu. Rev. Mater. Res.2015, 45, 111–127.

    Article  CAS  Google Scholar 

  31. Xiang, Y.; Lu, S. F.; Jiang, S. P. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem. Soc. Rev.2012, 41, 7291–7321.

    Article  CAS  Google Scholar 

  32. Tang, Z. Y.; Zhang, Z. L.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science2006, 314, 274–278.

    Article  CAS  Google Scholar 

  33. Xi, Y. N.; Dong, B. H.; Dong, Y. N.; Mao, N.; Ding, L.; Shi, L.; Gao, R. J.; Liu, W.; Su, G.; Cao, L. X. Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance. Chem. Mater.2016, 28, 1355–1362.

    Article  CAS  Google Scholar 

  34. Zhang, X. D.; Liu, Q. H.; Meng, L. J.; Wang, H.; Bi, W. T.; Peng, Y. H.; Yao, T.; Wei, S. Q.; Xie, Y. In-plane coassembly route to atomically thick inorganic-organic hybrid nanosheets. ACS Nano2013, 7, 1682–1688.

    Article  CAS  Google Scholar 

  35. Sun, Z. Q.; Liao, T.; Dou, Y. H.; Hwang, S. M.; Park, M. S.; Jiang, L.; Kim, J. H.; Dou, S. X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun.2014, 5, 3813.

    Article  CAS  Google Scholar 

  36. Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun.2017, 8, 15139.

    Article  Google Scholar 

  37. Peng, L. L.; Fang, Z. W.; Li, J.; Wang, L.; Bruck, A. M.; Zhu, Y.; Zhang, Y. M.; Takeuchi, K. J.; Marschilok, A. C.; Stach, E. A. et al. Two-dimensional holey nanoarchitectures created by confined self-assembly of nanoparticles via block copolymers: From synthesis to energy storage property. ACS Nano2018, 12, 820–828.

    Article  CAS  Google Scholar 

  38. Peng, L. L.; Fang, Z. W.; Zhu, Y.; Yan, C. S.; Yu, G. H. Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater.2018, 8, 1702179.

    Article  CAS  Google Scholar 

  39. Chen, D. H.; Peng, L. L.; Yuan, Y. F.; Zhu, Y.; Fang, Z. W.; Yan, C. S.; Chen, G.; Shahbazian-Yassar, R.; Lu, J.; Amine, K. e. al. Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett.2017, 17, 3907–3913.

    Article  CAS  Google Scholar 

  40. Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc.2018, 140, 5241–5247.

    Article  CAS  Google Scholar 

  41. Zhang, X.; Bruck, A. M.; Zhu, Y.; Peng, L. L.; Li, J.; Stach, E.; Zhu, Y. M.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C. et al. Probing enhanced lithium-ion transport kinetics in 2D holey nanoarchitectured electrodes. Nano Futures2018, 2, 035008.

    Article  CAS  Google Scholar 

  42. Shi, Z. L.; Lin, N. Porphyrin-based two-dimensional coordination kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc.2009, 131, 5376–5377.

    Article  CAS  Google Scholar 

  43. Katsonis, N.; Marchenko, A.; Fichou, D. Substrate-induced pairing in 2,3,6,7,10,11-hexakis-undecalkoxy-triphenylene self-assembled monolayers on Au(111). J. Am. Chem. Soc.2003, 125, 13682–13683.

    Article  CAS  Google Scholar 

  44. Zhu, H. O.; Xiao, C.; Cheng, H.; Grote, F.; Zhang, X. D.; Yao, T.; Li, Z.; Wang, C. M.; Wei, S. Q.; Lei, Y. e. al. Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nat. Commun.2014, 5, 3960.

    Article  CAS  Google Scholar 

  45. Zhu, Y.; Qian, Y. M.; Ju, Z. Y.; Peng, L. L.; Yu, G. H. Solvent-dependent intercalation and molecular configurations in metallocene-layered crystal superlattices. Nano Lett.2018, 18, 6071–6075.

    Article  CAS  Google Scholar 

  46. Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano2015, 9, 1977–1984.

    Article  CAS  Google Scholar 

  47. Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick cdse nanosheets. Angew. Chem., Int. Ed.2009, 48, 6861–6864.

    Article  CAS  Google Scholar 

  48. Du, Y. P.; Yin, Z. Y.; Zhu, J. X.; Huang, X.; Wu, X. J.; Zeng, Z. Y.; Yan, Q. Y.; Zhang, H. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun.2012, 3, 1177.

    Article  Google Scholar 

  49. Tan, C. L.; Zeng, Z. Y.; Huang, X.; Rui, X. H.; Wu, X. J.; Li, B.; Luo, Z. M.; Chen, J. Z.; Chen, B.; Yan, Q. Y. et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angew. Chem., Int. Ed.2015, 54, 1841–1845.

    Article  CAS  Google Scholar 

  50. Sun, X.; Deng, H. T.; Zhu, W. G.; Yu, Z.; Wu, C. Z.; Xie, Y. Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for ullmann couplings. Angew. Chem., Int. Ed.2016, 55, 1704–1709.

    Article  CAS  Google Scholar 

  51. Shim, J.; Yun, J. M.; Yun, T.; Kim, P.; Lee, K. E.; Lee, W. J.; Ryoo, R.; Pine, D. J.; Yi, G. R.; Kim, S. O. Two-minute assembly of pristine large-area graphene based films. Nano Lett.2014, 14, 1388–1393.

    Article  CAS  Google Scholar 

  52. Li, X. M.; Yang, T. T.; Yang, Y.; Zhu, J.; Li, L.; Alam, F. E.; Li, X.; Wang, K. L.; Cheng, H. Y.; Lin, C. T. et al. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application. Adv. Funct. Mater.2016, 26, 1322–1329.

    Article  CAS  Google Scholar 

  53. Cote, L. J.; Kim, F.; Huang, J. X. Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc.2009, 131, 1043–1049.

    Article  CAS  Google Scholar 

  54. Gattás-Asfura, K. M.; Constantine, C. A.; Lynn, M. J.; Thimann, D. A.; Ji, X. J.; Leblanc, R. M. Characterization and 2D self-assembly of CdSe quantum dots at the air-water interface. J. Am. Chem. Soc.2005, 127, 14640–14646.

    Article  CAS  Google Scholar 

  55. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P.D., Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett.2003, 3, 1229–1233.

    Article  CAS  Google Scholar 

  56. Kim, F.; Kwan, S.; Akana, J.; Yang, P. D. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc.2001, 123, 4360–4361.

    Article  CAS  Google Scholar 

  57. Zheng, Q. B.; Ip, W. H.; Lin, X. Y.; Yousefi, N.; Yeung, K. K.; Li, Z. G.; Kim, J. K. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano2011, 5, 6039–6051.

    Article  CAS  Google Scholar 

  58. Zhu, Y.; Peng, L. L.; Zhu, W. N.; Akinwande, D.; Yu, G. H. Layer-by-layer assembly of two-dimensional colloidal Cu2Se nanoplates and their layer-dependent conductivity. Chem. Mater.2016, 28, 4307–4314.

    Article  CAS  Google Scholar 

  59. Yu, X. Y.; Prévot, M. S.; Guijarro, N.; Sivula, K. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun.2015, 6, 7596.

    Article  Google Scholar 

  60. Biswas, S.; Drzal, L. T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Lett.2009, 9, 167–172.

    Article  CAS  Google Scholar 

  61. Ma, R. Z.; Osada, M.; Hu, L. F.; Sasaki, T. Self-assembled nanofilm of monodisperse cobalt hydroxide hexagonal platelets: Topotactic conversion into oxide and resistive switching. Chem. Mater.2010, 22, 6341–6346.

    Article  CAS  Google Scholar 

  62. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature2013, 499, 419–425.

    Article  CAS  Google Scholar 

  63. Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater.2019, 31, 1802880.

    Article  CAS  Google Scholar 

  64. Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res.2019, 12, 149–157.

    Article  CAS  Google Scholar 

  65. Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater.2013, 12, 792–797.

    Article  CAS  Google Scholar 

  66. Kim, S. M.; Hsu, A.; Araujo, P. T.; Lee, Y. H.; Palacios, T.; Dresselhaus, M.; Idrobo, J. C.; Kim, K. K.; Kong, J. Synthesis of patched or stacked graphene and hBN flakes: A route to hybrid structure discovery. Nano Lett.2013, 13, 933–941.

    Article  CAS  Google Scholar 

  67. Wang, M.; Jang, S. K.; Jang, W. J.; Kim, M.; Park, S. Y.; Kim, S. W.; Kahng, S. J.; Choi, J. Y.; Ruoff, R. S.; Song, Y. J. et al. A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater.2013, 25, 2746–2752.

    Article  CAS  Google Scholar 

  68. Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater.2014, 13, 1096–1101.

    Article  CAS  Google Scholar 

  69. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science2015, 349, 524–528.

    Article  CAS  Google Scholar 

  70. Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev.2018, 47, 3129–3151.

    Article  CAS  Google Scholar 

  71. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater.2014, 13, 1135–1142.

    Article  CAS  Google Scholar 

  72. Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc.2015, 137, 12162–12174.

    Article  CAS  Google Scholar 

  73. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science2017, 357, 788–792.

    Article  CAS  Google Scholar 

  74. Srivastava, S.; Kotov, N. A. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc. Chem. Res.2008, 41, 1831–1841.

    Article  CAS  Google Scholar 

  75. Xi, Q.; Chen, X.; Evans, D. G.; Yang, W. S. Gold nanoparticle-embedded porous graphene thin films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing. Langmuir2012, 28, 9885–9892.

    Article  CAS  Google Scholar 

  76. Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett.2007, 7, 773–777.

    Article  CAS  Google Scholar 

  77. Sasaki, T.; Ebina, Y.; Tanaka, T.; Harada, M.; Watanabe, M.; Decher, G. Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater.2001, 13, 4661–4667.

    Article  CAS  Google Scholar 

  78. Xiao, F. X.; Miao, J. W.; Liu, B. Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photo-electrochemical and photocatalytic applications. J. Am. Chem. Soc.2014, 136, 1559–1569.

    Article  CAS  Google Scholar 

  79. Kang, Q.; Vernisse, L.; Remsing, R. C.; Thenuwara, A. C.; Shumlas, S. L.; McKendry, I. G.; Klein, M. L.; Borguet, E.; Zdilla, M. J.; Strongin, D. R. Effect of interlayer spacing on the activity of layered manganese oxide bilayer catalysts for the oxygen evolution reaction. J. Am. Chem. Soc.2017, 139, 1863–1870.

    Article  CAS  Google Scholar 

  80. Huang, S.; Cen, X.; Peng, H. D.; Guo, S. Z.; Wang, W. Z.; Liu, T. X. Heterogeneous ultrathin films of poly(vinyl alcohol)/layered double hydroxide and montmorillonite nanosheets via layer-by-layer assembly. J. Phys. Chem. B2009, 113, 15225–15230.

    Article  CAS  Google Scholar 

  81. Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. e. al. Ultrastrong and stiff layered polymer nanocomposites. Science2007, 318, 80–83.

    Article  CAS  Google Scholar 

  82. Liu, M. J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature2015, 517, 68–72.

    Article  CAS  Google Scholar 

  83. Lin, T. H.; Huang, W. H.; Jun, I. K.; Jiang, P. Bioinspired assembly of colloidal nanoplatelets by electric field. Chem. Mater.2009, 21, 2039–2044.

    Article  CAS  Google Scholar 

  84. Mao, C.; Huang, J. R.; Zhu, Y. T.; Jiang, W.; Tang, Q. X.; Ma, X. J. Tailored parallel graphene stripes in plastic film with conductive anisotropy by shear-induced self-assembly. J. Phys. Chem. Lett.2013, 4, 43–47.

    Article  CAS  Google Scholar 

  85. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics2016, 10, 216–226.

    Article  CAS  Google Scholar 

  86. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    Article  CAS  Google Scholar 

  87. Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol.2014, 9, 676–681.

    Article  CAS  Google Scholar 

  88. Hu, L. F.; Wu, L. M.; Liao, M. Y.; Fang, X. S., High-performance NiCo2O4 nanofilm photodetectors fabricated by an interfacial self-assembly strategy. Adv. Mater.2011, 23, 1988–1992.

    Article  CAS  Google Scholar 

  89. Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett.2014, 14, 553–558.

    Article  CAS  Google Scholar 

  90. Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater.2016, 28, 1917–1933.

    Article  CAS  Google Scholar 

  91. Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy2017, 2, 17089.

    Article  CAS  Google Scholar 

  92. Xiong, P.; Peng, L. L.; Chen, D. H.; Zhao, Y.; Wang, X.; Yu, G. H. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy2015, 12, 816–823.

    Article  CAS  Google Scholar 

  93. Peng, L. L.; Zhu, Y.; Khakoo, U.; Chen, D. H.; Yu, G. H. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy2015, 17, 36–42.

    Article  CAS  Google Scholar 

  94. Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci.2016, 9, 3399–3405.

    Article  CAS  Google Scholar 

  95. Peng, L. L.; Zhu, Y.; Peng, X.; Fang, Z. W.; Chu, W. S.; Wang, Y.; Xie, Y. J.; Li, Y. F.; Cha, J. J.; Yu, G. H. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage. Nano Lett.2017, 17, 6273–6279.

    Article  CAS  Google Scholar 

  96. Peng, L. L.; Zhang, X.; Fang, Z. W.; Zhu, Y.; Xie, Y. J.; Cha, J. J.; Yu, G. H. General facet-controlled synthesis of single-crystalline {010}-oriented LiMPO4 (M = Mn, Fe, Co) nanosheets. Chem. Mater.2017, 29, 10526–10533.

    Article  CAS  Google Scholar 

  97. Zhao, Y.; Peng, L. L.; Liu, B. R.; Yu, G. H. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett.2014, 14, 2849–2853.

    Article  CAS  Google Scholar 

  98. Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev.2014, 43, 3303–3323.

    Article  CAS  Google Scholar 

  99. Ji, H. X.; Zhao, X.; Qiao, Z. H.; Jung, J.; Zhu, Y. W.; Lu, Y. L.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun.2014, 5, 3317.

    Article  CAS  Google Scholar 

  100. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett.2014, 14, 3185–3190.

    Article  CAS  Google Scholar 

  101. Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B.; Li, S. S.; Li, J. B.; Wei, S. H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale2014, 6, 7226–7231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G. Y. acknowledges the funding support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0019019, and Camille Dreyfus Teacher-Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Yu.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Xing, Q., Fernandez, D. et al. A mini review on two-dimensional nanomaterial assembly. Nano Res. 13, 1179–1190 (2020). https://doi.org/10.1007/s12274-019-2559-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2559-5

Keywords

Navigation