Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electronics based on two-dimensional materials

An Erratum to this article was published on 03 December 2014

This article has been updated

Abstract

The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal–oxide–semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of new generation devices.
Figure 2: Mobility of 2DMs as a function of preparation method.
Figure 3: Digital switch and transistor for analog applications.
Figure 4: Figures of merit of two-dimensional materials for high-performance and TFET applications.
Figure 5: Figures of merit of transistors for flexible electronics.

Change history

  • 05 November 2014

    In the version of this Review Article originally published, in Fig. 4c, the y-axis values were incorrect; they should have been '100, 102, 104 and 106' (from bottom to top). This error has now been corrected in the online versions of the Review Article.

References

  1. Dennard, R. H. et al. Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974).

    Article  Google Scholar 

  2. Mistry, K. et al. A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. IEEE Int. Electron Dev. Meeting 247–250 (2007).

  3. Cartwright, J. Intel enters the third dimension. Nature News http://dx.doi.org/10.1038/news.2011.274 (6 May 2011).

    Google Scholar 

  4. Jan, C-H. et al. A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. Int. Electron Dev. Meeting Tech. Digest 44–47 (2012).

  5. Yu, B. et al. Ultra-thin-body silicon-on-insulator MOSFETs for terabit-scale integration. Proc. Int. Semiconductor Dev. Res. Symp. 623–626 (Engineering Academic Outreach, 1997).

    Google Scholar 

  6. Moore, G. E. Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965).

    Google Scholar 

  7. International Technology Roadmap for Semiconductors (ITRS, 2012); http://www.itrs.net/

  8. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  9. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). In this paper the transport and switching properties of high-quality graphene sheets obtained by micromechanical cleavage were studied.

    Article  CAS  Google Scholar 

  10. Dickinson, R. G. & Pauling, L. The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923).

    Article  CAS  Google Scholar 

  11. Joensen, P., Frindt, R. F. & Morrison, S. R. Single layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  12. Bonaccorso, F. et al. Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (December, 2012).

    Article  CAS  Google Scholar 

  13. Lee, G. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    Article  CAS  Google Scholar 

  14. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 99, 419–425 (2013).

    Article  CAS  Google Scholar 

  15. Nikonov, D. & Young, I. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013).

    Article  CAS  Google Scholar 

  16. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011). First article in which a single-layer MoS 2 transistor was demonstrated.

    Article  CAS  Google Scholar 

  17. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  18. Hao, Y. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013).

    Article  CAS  Google Scholar 

  19. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). This paper introduces CVD growth of graphene on copper, demonstrating the first large-area reproducible monolayer growth process.

    Article  CAS  Google Scholar 

  20. Petrone, N. et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012).

    Article  CAS  Google Scholar 

  21. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  22. Gong, C., Colombo, L. & Cho, K. Photon-assisted CVD growth of graphene using metal adatoms as catalysts. J. Phys. Chem. C 116, 18263–18269 (2012).

    Article  CAS  Google Scholar 

  23. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Mater. 12, 792–797 (2013).

    Article  CAS  Google Scholar 

  24. Rummeli, M. H. et al. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206–4210 (2010).

    Article  CAS  Google Scholar 

  25. Lin, M.-Y. et al. Low-temperature grown graphene films by using molecular beam epitaxy. Appl. Phys. Lett. 101, 221911 (2012).

    Article  CAS  Google Scholar 

  26. Yamada, T., Ishihare, M. & Hasegava, M. Low temperature graphene synthesis from poly(methyl methacrylate) using microwave plasma treatment. Appl. Phys. Express 6, 115102 (2013).

    Article  CAS  Google Scholar 

  27. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  28. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    Article  CAS  Google Scholar 

  29. Wu, Y. et al. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett. 92, 092102 (2008).

    Article  CAS  Google Scholar 

  30. Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010). In this paper, transistors based on graphene grown on SiC exceeding state-of-the-art silicon transistors for high-frequency electronics were demonstrated.

    Article  CAS  Google Scholar 

  31. Nagashima, A., Tejima, N., Gamou, Y., Kawai, T. & Oshima, C. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. B 51, 4606–4613 (1995).

    Article  CAS  Google Scholar 

  32. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  33. Liu, H. et al. Statistical study of deep submicron dual-gated field effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640–2646 (2013).

    Article  CAS  Google Scholar 

  34. Carmalt, C. J., Parkin, I. P. & Peters, E. S. Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron 22, 1499–1505 (2003).

    Article  CAS  Google Scholar 

  35. Potoczek, M., Przybylski, K. & Rekas, M. Defect structure and electrical properties of molybdenum disulphide. J. Phys. Chem. Solids 67, 2528–2535 (2006).

    Article  CAS  Google Scholar 

  36. Li, C., Huang, L., Snigdha, G. P., Yu, Y. & Cao, L. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: The case of GeS. ACS Nano 6, 8868–8877 (2012).

    Article  CAS  Google Scholar 

  37. Lippert, G. et al. Direct graphene growth on insulator. Phys. Status Solidi B 248, 2619–2622 (2011).

    Article  CAS  Google Scholar 

  38. Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scripta T146, 014006 (2012).

    Article  CAS  Google Scholar 

  39. Bonaccorso, F., Tan, P. H. & Ferrari, A. C. Multiwall nanotubes, multilayers, and hybrid nanostructures: new frontiers for technology and Raman spectroscopy. ACS Nano 7, 1838–1844 (2013).

    Article  CAS  Google Scholar 

  40. Laskar, M. R. et al. Large area single crystal (0001) oriented MoS2 . Appl. Phys. Lett. 102, 252108 (2013).

    Article  CAS  Google Scholar 

  41. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  42. Maragó, O. M. et al. Brownian motion of graphene. ACS Nano 4, 7515–7523 (2010).

    Article  CAS  Google Scholar 

  43. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    CAS  Google Scholar 

  44. Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    Article  CAS  Google Scholar 

  45. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Commun. 5, 2995 (2014).

    Article  CAS  Google Scholar 

  46. Nathan, A. et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 100, 1486–1517 (2012).

    Article  Google Scholar 

  47. Fallahazad, B., Kim, S., Colombo, L. & Tutuc, E. Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric. Appl. Phys. Lett. 97, 123105 (2010).

    Article  CAS  Google Scholar 

  48. Nandamuri, G., Roumimov, S. & Solanki, R. Remote plasma assisted growth of graphene films. Appl. Phys. Lett. 96, 154101 (2010).

    Article  CAS  Google Scholar 

  49. Hassoun, J. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14, 4901–4906 (2014).

    Article  CAS  Google Scholar 

  50. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  51. Withers, F. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 14, 3987–3992 (2014).

    Article  CAS  Google Scholar 

  52. Acrivos, J. V., Liang, W. Y., Wilson, J. A. & Yoffe, A. D. Optical studies of metal-semiconductor transmutations produced by intercalation. J. Phys. C 4, L18 (1971).

    Article  CAS  Google Scholar 

  53. Bonaccorso, F. & Sun, Z. Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics. Opt. Mater. Express 4, 63–78 (2014).

    Article  CAS  Google Scholar 

  54. Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009).

    Article  CAS  Google Scholar 

  55. Xia, F., Pereibeinos, V., Lin, Y-M., Wu, Y. & Avouris, P. The origins and limits of metal–graphene junction resistance. Nature Nanotech. 6, 179–184 (2011).

    Article  CAS  Google Scholar 

  56. Russo, S., Craciun, M. F., Yamamoto, M., Morpurgo, A. F. & Tarucha, S. Contact resistance in graphene-based devices. Physica E 42, 677–679 (2010).

    Article  CAS  Google Scholar 

  57. Venugopal, A., Colombo, L. & Vogel, E. Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 96, 013512 (2010).

    Article  CAS  Google Scholar 

  58. Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2012).

    Article  CAS  Google Scholar 

  59. Du, Y. et al. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Dev. Lett. 35, 599–601 (2014).

    Article  CAS  Google Scholar 

  60. Hsu, A. et al. Impact of graphene interface quality on contact resistance and RF device performance. IEEE Electron Dev. Lett. 32, 1008–1010 (2011).

    Article  CAS  Google Scholar 

  61. Li, W. et al. Ultraviolet/ozone treatment to reduce metal–graphene contact resistance. Appl. Phys. Lett. 102, 183110 (2013).

    Article  CAS  Google Scholar 

  62. Robinson, J. A. et al. Contacting graphene. Appl. Phys. Lett. 98, 053103 (2011).

    Article  CAS  Google Scholar 

  63. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  64. McDonnell, S. et al. Defect-dominated doping and contact resistance in MoS2 . ACS Nano 8, 2880–2888 (2014).

    Article  CAS  Google Scholar 

  65. Taur, Y. & Ning, T. H. Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, 2001).

    Google Scholar 

  66. Seabaugh, A. C. & Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010).

    Article  CAS  Google Scholar 

  67. Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nature Nanotech. 4, 811–819 (2009).

    Article  CAS  Google Scholar 

  68. Huang, X. et al. Sub 50-nm FinFET: PMOS. Int. Electron Dev. Meeting Tech. Digest 67–70 (1999).

  69. Radosavljevic, M. et al. Electrostatics improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-K gate dielectric and scaled gate-to-drain/gate-to-source separation. IEEE Int. Electron Dev. Meeting 33–1 (2011).

  70. Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electron Dev. Lett. 28, 282–284 (2007).

    Article  CAS  Google Scholar 

  71. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    Article  CAS  Google Scholar 

  72. Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).

    Article  CAS  Google Scholar 

  73. Dewey, G. et al. Carrier transport in high-mobility III–V quantum-well transistors and performance impact for high-speed low-power logic applications. IEEE Electron Dev. Lett. 29, 1094–1097 (2008).

    Article  CAS  Google Scholar 

  74. Chen, J. H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  75. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  76. Li, X. et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418 (2013).

    Article  CAS  Google Scholar 

  77. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nature Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  78. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gate MoS2 transistor. Nature Nanotech. 8, 146–147 (2013).

    Article  CAS  Google Scholar 

  79. Liu, H., Neal, A. T., Zhu, Z., Tomanek, D. & Ye, P. D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  80. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  81. Liu, L., Lu, Y. & Guo, J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Dev. 60, 4133–4139 (2013).

    Article  CAS  Google Scholar 

  82. Liu, L., Kumar, S. B., Ouyang, Y. & Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Dev. 58, 3042–3047 (2011).

    Article  CAS  Google Scholar 

  83. Datta, S. Quantum Phenomena (Addison-Wesley, 1989).

    Google Scholar 

  84. Naveh, Y. & Likharev, K. K. Modeling of 10-nm-scale ballistic MOSFETs. IEEE Electron Dev. Lett. 21, 242–244 (2000).

    Article  CAS  Google Scholar 

  85. Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011).

    Article  CAS  Google Scholar 

  86. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012). Demonstration of complex circuits based on TMD materials.

    Article  CAS  Google Scholar 

  87. Corrion, A. L. et al. High-speed 501-stage DCFL GaN ring oscillator circuits. IEEE Electron Dev. Lett. 34, 846–848 (2013).

    Article  CAS  Google Scholar 

  88. Kong, Y. et al. Monolithic integrated enhancement/depletion-mode AlGaN/GaN high electron mobility transistors with cap layer engineering. Appl. Phys. Lett. 102, 043505 (2013).

    Article  CAS  Google Scholar 

  89. Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).

    Article  CAS  Google Scholar 

  90. Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954–960 (2013).

    Article  CAS  Google Scholar 

  91. Fix, W., Ullmann, A., Ficker, J. & Clemens, W. Fast polymer integrated circuits. Appl. Phys. Lett. 81, 1735–1737 (2002).

    Article  CAS  Google Scholar 

  92. Wakabayashi, H. et al. 45 nm gate length CMOS technology and beyond using steep halo. Proc. IEDM Conf. 2000 00–49 (2000).

  93. Davari, B., Dennard, R. H. & Shahidi, G. G. CMOS scaling for high performance and low power—the next ten years. Proc. IEEE 83, 595–606 (1995).

    Article  Google Scholar 

  94. Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

    Article  CAS  Google Scholar 

  95. Lu, H. & Seabaugh, A. C. Tunnel field-effect transistors: state-of-the-art. J. Electron Dev. Soc. 2, 44–49 (2014).

    Article  CAS  Google Scholar 

  96. Appenzeller, J., Lin, Y., Knoch, J. & Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004). First demonstration of TFET with SS <60 mV dec−1 based on carbon material.

    Article  CAS  Google Scholar 

  97. Lu, Y. et al. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high κ dielectrics for nanotube transistors with 60 mV/decade switching. J. Am. Chem. Soc. 128, 3518–3519 (2006).

    Article  CAS  Google Scholar 

  98. Knoll, L. et al. inverters with strained Si nanowire complementary tunnel field-effect transistors. IEEE Electron Dev. Lett. 34, 813–815 (2013).

    Article  CAS  Google Scholar 

  99. Gandhi, R., Chen, Z., Singh, N., Banerjee, K. & Lee, S. Vertical Si-nanowire-type tunneling FETs with low subthreshold swing (≤50 mV/decade) at room temperature. IEEE Electron Dev. Lett. 32, 437–439 (2011).

    Article  CAS  Google Scholar 

  100. Gandhi, R., Chen, Z., Singh, N., Banerjee, K. & Lee, S. CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤50-mV/decade subthreshold swing. IEEE Electron Dev. Lett. 32, 1504–1506 (2011).

    Article  CAS  Google Scholar 

  101. Villalon, A. et al. Strained tunnel FETs with record ION: first demonstration of ETSOI TFETs with SiGe channel and RSD. Symp. VLSI Technol. 49–50 (2012).

  102. Krishnamohan, T., Donghyun, K., Raghunathan, S. & Saraswat, K. Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and &lt;&lt;60mV/dec subthreshold slope. IEEE Int. Electron Dev. Meeting 1–3 (2008).

  103. Kim, S. H., Kam, H., Hu, C. & Liu, T-J. K. Germanium-source tunnel field effect transistors with record high ION/IOFF . Symp. VLSI Technol. 178–179 (2009).

  104. Tomioka, K., Yoshimura, M. & Fukui, T. Steep-slope tunnel field-effect transistors using III–V nanowire/Si heterojunction. Symp. VLSI Technol. 47–48 (2012).

  105. Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. IEEE Int. Electron Dev. Meeting 33 (2011).

  106. Ghosh, R. K. & Mahapatra, S. Monolayer transition metal dichalcogenide channel-based tunnel transistor. IEEE J. Electron Dev. Soc. 1, 175–180 (2013).

    Article  Google Scholar 

  107. Zhang, Q., Iannaccone, G. & Fiori, G. 2-D tunnel transistors based on Bi2Se3 thin film. IEEE Electron Dev. Lett. 35, 129–131 (2014).

    Article  CAS  Google Scholar 

  108. Jena, D. Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 101, 1585–1602 (2013).

    Article  CAS  Google Scholar 

  109. Das, S., Prakash, A., Salazar, R. & Appenzeller, J. Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano 8, 1681–1689 (2014).

    Article  CAS  Google Scholar 

  110. Zhang, Q., Zhao, W. & Seabaugh, A. Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. 27, 297–300 (2006).

    Article  CAS  Google Scholar 

  111. Efetov, D. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  CAS  Google Scholar 

  112. Ma, N. & Jena, D. Interband tunneling in two-dimensional crystal semiconductors. Appl. Phys. Lett. 102, 132102 (2013).

    Article  CAS  Google Scholar 

  113. Cho, S., Butch, N. P., Paglione, J. & Fuhrer, M. S. Insulating behavior in ultrathin bismuth selenide field effect transistors. Nano Lett. 11, 1925–1927 (2011).

    Article  CAS  Google Scholar 

  114. Chang, J., Register, L. F. & Banerjee, S. K. Topological insulator Bi2Se3 thin films as an alternative channel material in metal–oxide–semiconductor field-effect transistors. J. Appl. Phys. 112, 124511 (2012).

    Article  CAS  Google Scholar 

  115. Majumdar, K., Hobbs, C. & Kirsch, P. D. Benchmarking transition metal dichalcogenide MOSFET in the ultimate physical scaling limit. IEEE Electron Dev. Lett. 35, 402–404 (2014).

    Article  CAS  Google Scholar 

  116. Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

    Article  CAS  Google Scholar 

  117. Alam, K. & Lake, R. Monolayer MoS2 transistors beyond the technology road map. IEEE Trans. Electron Dev. 59, 3250–3254 (2012). This paper presents MoS 2 -based devices with performances close to the ITRS requirements.

    Article  CAS  Google Scholar 

  118. Uchida, K., Koga, J. & Takagi, S. Experimental study on electron mobility in ultrathin-body silicon-on-insulator metal–oxide–semiconductor field-effect transistors. J. Appl. Phys. 102, 074510 (2007).

    Article  CAS  Google Scholar 

  119. Yokoyama, M. et al. Ultrathin body InGaAs-on-insulator metal-oxide-semiconductor field-effect transistors with InP passivation layers on Si substrates fabricated by direct wafer bonding. Appl. Phys. Express 4, 054202 (2011).

    Article  CAS  Google Scholar 

  120. Hu, Y. et al. Extraction of channel electron effective mobility in InGaAs/AlO n-FinFETs. IEEE Trans. Nanotechnol. 12, 806–809 (2013).

    Article  CAS  Google Scholar 

  121. Pillarisetty, R. et al. High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc = 0.5 V) III–V CMOS architecture. IEEE Int. Proc. Electron Dev. Meeting 6.7.1–6.7.4 (2010).

  122. Ito, T. et al. Effective mobility enhancement in Al2O3/InSb/Si quantum well metal oxide semiconductor field effect transistors for thin InSb channel layers. Jpn. J. Appl. Phys. 52, 04CF01 (2013).

    Article  CAS  Google Scholar 

  123. Krishnamohan, T., Krivokapic, Z., Uchida, K., Nishi, Y. & Saraswat, K. High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: experiments. IEEE Trans. Electron Dev. 53, 990–999 (2006).

    Article  CAS  Google Scholar 

  124. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    Article  CAS  Google Scholar 

  125. Feenstra, R. M., Jena, D. & Gu, G. Single-particle tunneling in doped graphene-insulator-graphene junctions. J. Appl. Phys. 111, 043711 (2012).

    Article  CAS  Google Scholar 

  126. Zhao, P., Feenstra, R. M., Gu, G. & Jena, D. SymFET: A proposed symmetric graphene tunneling field-effect transistor. IEEE Trans. Electron Dev. 60, 951–957 (2013).

    Article  Google Scholar 

  127. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). This paper demonstrated a new concept of vertical tunnelling transistors based on heterostructures assembled from 2D atomic crystals.

    Article  CAS  Google Scholar 

  128. Kikuchi, K. in High Spectral Density Optical Communication Technologies Vol. 6, 11–49 (Springer, 2010).

    Book  Google Scholar 

  129. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  130. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  131. Avouris, P. Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010).

    Article  CAS  Google Scholar 

  132. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008). The first paper measuring saturation velocity in graphene.

    Article  CAS  Google Scholar 

  133. Dorgan, V. E., Bae, M-H. & Pop, E. Mobility and saturation velocity in graphene on SiO2 . Appl. Phys. Lett. 97, 082112 (2010).

    Article  CAS  Google Scholar 

  134. Dorgan, V. E., Behnam, A., Conley, H. J., Bolotin, K. I. & Pop, E. High-field electrical and thermal transport in suspended graphene. Nano Lett. 13, 4581–4586 (2013). This paper reports saturation velocity in suspended graphene.

    Article  CAS  Google Scholar 

  135. Schwierz, F. Graphene transistors: status, prospects, and problems. Proc. IEEE 6, 770–775 (2013).

    Google Scholar 

  136. Zheng, F. et al. Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation. Sci. Rep. 3, 1314 (2013).

    Article  CAS  Google Scholar 

  137. Guo, Z. et al. Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett. 13, 942–947 (2013).

    Article  CAS  Google Scholar 

  138. Lai, R. et al. Sub 50 nm InP HEMT device with Fmax greater than 1 THz. IEEE Int. Electron Dev. Meeting 609–611 (2007).

  139. Szafranek, B. N., Fiori, G., Schall, D., Neumaier, D. & Kurz, H. Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett. 12, 1324–1328 (2012).

    Article  CAS  Google Scholar 

  140. Fiori, G. & Iannaccone, G. Insights on radio frequency bilayer graphene FETs. IEEE Int. Electron Dev. Meeting 17.3.1–17.3.4 (2012).

  141. Fang, T., Konar, A., Xing, H. & Jena D. Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008).

    Article  CAS  Google Scholar 

  142. Fiori, G., Szafranek, B. N., Iannaccone, G. & Neumaier, D. Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 103, 233509 (2013).

    Article  CAS  Google Scholar 

  143. Bao, W., Cai, X., Kim, D., Sridhara, K. & Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).

    Article  CAS  Google Scholar 

  144. Butch, N. P. et al. Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals. Phys. Rev. B 81, 241301 (R) (2010).

    Article  CAS  Google Scholar 

  145. Mehr, W. et al. Vertical graphene based transistor. IEEE Electron Dev. Lett. 33, 691 (2012).

    Article  CAS  Google Scholar 

  146. Vaziri, S. et al. A graphene-based hot electron transistor. Nano Lett. 13, 1435–1439 (2013).

    Article  CAS  Google Scholar 

  147. Wang, Z. F. et al. Ballistic rectification in a Z-shaped graphene nanoribbon junction. Appl. Phys. Lett. 92, 133119 (2008).

    Article  CAS  Google Scholar 

  148. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys. 5, 222–226 (2009).

    Article  CAS  Google Scholar 

  149. Guerriero, E. et al. Gigagertz graphene ring oscillators. ACS Nano 7, 5588–5594 (2013).

    Article  CAS  Google Scholar 

  150. Schall, D., Otto, M., Neumaier, D. & Kurz, H. Integrated ring oscillators based on high-performance graphene inverters. Sci. Rep. 3, 2592 (2013).

    Article  Google Scholar 

  151. Guerriero, F. et al. Graphene audio voltage amplifier. Small 8, 357–361 (2012).

    Article  CAS  Google Scholar 

  152. Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067 (2012).

    Article  CAS  Google Scholar 

  153. Wang, H., Hsu, A., Wu, J., Kong, J. & Palacios, T. Graphene-based ambipolar RF mixers. IEEE Electron Dev. Lett. 31, 906–908 (2010).

    Article  CAS  Google Scholar 

  154. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    Article  CAS  Google Scholar 

  155. Habibpour, O., Vukusic, J. & Stake, J. A 30-GHz integrated subharmonic mixer based on a multichannel graphene FET. IEEE Trans. Microwave Theor. Tech. 61, 841–847 (2013).

    Article  CAS  Google Scholar 

  156. Fiori, G., Neumaier, D., Szafranek, B. N. & Iannaccone, G. Bilayer graphene transistors for analog electronics. IEEE Trans. Electron Dev. 61, 729 (2014).

    Article  CAS  Google Scholar 

  157. Wang, H., Nezich, D., Kong, J. & Palacios, T. Graphene frequency multipliers. IEEE Electron Dev. Lett. 30, 547–549 (2009).

    Article  CAS  Google Scholar 

  158. Ramon, M. E. et al. Three-gigahertz graphene frequency doubler on quartz operating beyond the transit frequency. IEEE Trans. Nanotechnol. 11, 877–883 (2012).

    Article  Google Scholar 

  159. Han, S. J., Valdes Garcia, A., Oida, S., Jenkins, K. A. & Haensch, W. Graphene radio frequency receiver integrated circuit. Nature Commun. 5, 3086 (2014).

    Article  CAS  Google Scholar 

  160. Chen, Y. et al. Electronic paper: flexible active-matrix electronic ink display. Nature 423, 136 (2003).

    Article  CAS  Google Scholar 

  161. Dankerl, M. et al. Graphene solution-gated field-effect transistor array for sensing applications. Adv. Funct. Mater. 20, 3117–3124 (2010).

    Article  CAS  Google Scholar 

  162. Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Mater. 7, 907–915 (2008).

    Article  CAS  Google Scholar 

  163. Zhai, Y., Mathew, L., Rao, R., Xu, D. & Banerjee, S. K. High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12, 5609–5615 (2012).

    Article  CAS  Google Scholar 

  164. Shahrjerdi, D. & Bedell, S. W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 13, 315–320 (2013).

    Article  CAS  Google Scholar 

  165. Kim, D-H. et al. Complementary logic gates and ring oscillators on plastic substrates by use of printed ribbons of single-crystalline silicon. IEEE Electron Dev. Lett. 29, 73–76 (2008).

    Article  CAS  Google Scholar 

  166. Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009).

    Article  CAS  Google Scholar 

  167. Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet printing process and its applications. Adv. Mater. 22, 673–685 (2010).

    Article  CAS  Google Scholar 

  168. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  169. Sundar, V. C. et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    Article  CAS  Google Scholar 

  170. Uemura, T., Hirose, Y., Uno, M., Takimiya, K. & Takeya, J. Very high mobility in solution-processed organic thin-film transistors of highly ordered [1]benzothieno[3,2-b]benzothiophene derivatives. Appl. Phys. Express 2, 111501 (2009).

    Article  CAS  Google Scholar 

  171. Lee, K. F., Gibbons, J. F., Saraswat, K. C. & Kamins, T. I. Thin film MOSFETs fabricated in laser-annealed polycrystalline silicon. Appl. Phys. Lett. 35, 173–175 (1979).

    Article  CAS  Google Scholar 

  172. Pecora, A. et al. Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid-State Electron. 52, 348–352 (2008).

    Article  CAS  Google Scholar 

  173. Lee, S-W. & Joo, S-K. Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization. IEEE Electron Dev. Lett. 17, 160–162 (1996).

    Article  CAS  Google Scholar 

  174. Kazuhiro, S., Sugiura, O. & Matsumura, M. High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method. IEEE Trans. Electron Dev. 40, 112–117 (1993).

    Article  Google Scholar 

  175. Castellanos-Gomez, A. et al. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012).

    Article  CAS  Google Scholar 

  176. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    Article  CAS  Google Scholar 

  177. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  178. Zavodchikova, M. Y. et al. Carbon nanotube thin film transistors based on aerosol methods. Nanotechnology 20, 085201 (2009).

    Article  CAS  Google Scholar 

  179. Snow, E. S., Campbell, P. M., Ancona, M. G. & Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86, 033105 (2005).

    Article  CAS  Google Scholar 

  180. Ha, M. et al. Printed, sub-3 V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4, 4388–4395 (2010).

    Article  CAS  Google Scholar 

  181. Sun, D. et al. Flexible high-performance carbon nanotube integrated circuits. Nature Nanotech. 6, 156–161 (2011).

    Article  CAS  Google Scholar 

  182. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  183. Bonaccorso, F. et al. Density gradient ultracentrifugation of nanotubes: interplay of bundling and surfactant encapsulation. J. Phys. Chem. C 114, 17267–17285 (2010).

    Article  CAS  Google Scholar 

  184. Balasubramanian, K., Sordan, R., Burghard, M. & Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 4, 827–830 (2004).

    Article  CAS  Google Scholar 

  185. Cummings, A. W. et al. Charge transport in polycrystalline graphene: challenges and opportunities. Adv. Mater. 26, 5079–5094 (2014).

    Article  CAS  Google Scholar 

  186. Zhu, W. et al. Graphene radio frequency devices on flexible substrate. Appl. Phys. Lett. 102, 233102 (2013).

    Article  CAS  Google Scholar 

  187. Petrone, N., Meric, I., Hone, J. & Shepard, K. L. Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121–125 (2013).

    Article  CAS  Google Scholar 

  188. Chang, H-Y. et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

    Article  CAS  Google Scholar 

  189. Mailly-Giacchetti, B. et al. pH sensing properties of graphene solution-gated field-effect transistors. J. Appl. Phys. 114, 084505 (2013).

    Article  CAS  Google Scholar 

  190. Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nature Commun. 3, 763 (2012).

    Article  CAS  Google Scholar 

  191. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  192. Lee, J. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  CAS  Google Scholar 

  193. Nomura, K. et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003).

    Article  CAS  Google Scholar 

  194. Kim, M. et al. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl. Phys. Lett. 90, 212114 (2007).

    Article  CAS  Google Scholar 

  195. Nomura, K. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Lu, N. Ma and R. Sordan for discussions. We acknowledge financial support from Graphene Flagship (contract no. CNECT-ICT-604391), the EC Seventh Framework Program under the STREP Project GRADE Contract 317839, the Project GO-NEXTs under Contract 309201, the UNIPI-MIT joint project 2-Much, NRI-SWAN a Semiconductor Research Corporation (SRC) program sponsored by NERC and NIST, STARnet an SRC program sponsored by MARCO and DARPA, and a Newton International Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianluca Fiori or Francesco Bonaccorso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiori, G., Bonaccorso, F., Iannaccone, G. et al. Electronics based on two-dimensional materials. Nature Nanotech 9, 768–779 (2014). https://doi.org/10.1038/nnano.2014.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing