Skip to main content
Log in

Structural and optical verification of residual strain effect in single crystalline CdTe nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single crystalline CdTe nanowires have been synthesized using Au-catalyzed chemical vapor deposition. X-ray diffraction reveals the existence of nonnegligible inhomogeneous compressive strain in the nanowires along the 〈111〉 growth direction. The effect of the strain on the electronic structure is manifested by the blue-shifted and broadened photoluminescence spectra involving shallow donor/acceptor states. Such residual strain is of great importance for a better understanding of the optical and electrical behaviors of various semiconductor nanomaterials as well as for device design and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, D. S.; Chen, D.; Xu, Y. J.; Shi, X. S.; Guo, G. L.; Gui, L. L.; Tang, Y. Q. Preparation of II–VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates. Pure Appl. Chem. 2000, 72, 127–135.

    Article  Google Scholar 

  2. Wang, F. D.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E. Solution-liquid-solid growth of semiconductor nanowires. Inorg. Chem. 2006, 45, 7511–7521.

    Article  Google Scholar 

  3. Tang, Z. Q.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

    Article  Google Scholar 

  4. Yang, Q.; Tang, K.; Wang, C.; Qian, Y.; Zhang, S. Y. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires. J. Phys. Chem. B 2002, 106, 9227–9230.

    Article  Google Scholar 

  5. Yong, S. M.; Muralidharan, P.; Jo, S. H.; Kim, D. K. One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater. Lett. 2010, 64, 1551–1554.

    Article  Google Scholar 

  6. Hou, J. W.; Yang, X. C.; Lv, X.; Peng, D.; Huang, M.; Wang, Q. Y. One-step synthesis of CdTe branched nanowires and nanorod arrays. Appl. Surf. Sci. 2011, 257, 7684–7688.

    Article  Google Scholar 

  7. Ye, Y.; Dai, L.; Sun, T.; You, L. P.; Zhu, R.; Gao, J. Y.; Peng, R. M.; Yu, D. P.; Qin, G. G. High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices. J. Appl. Phys. 2010, 108, 044301.

    Article  Google Scholar 

  8. Hochbaum, A. I.; Fan, R.; He, R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.

    Article  Google Scholar 

  9. Wang, D.; Dai, H. J. Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angew. Chem. Int. Ed. 2002, 114, 4977–4980.

    Article  Google Scholar 

  10. Utama, M. I. B.; Peng, Z.; Chen, R.; Peng, B.; Xu, X.; Dong, Y.; Wong, L. M.; Wang, S.; Sun, H.; Xiong, Q. H. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: A demonstration of epitaxial growth strategy. Nano Lett. 2011, 11, 3051–3057.

    Article  Google Scholar 

  11. Lovergine, N.; Prete, P.; Cola, A.; Mazzer, M.; Cannoletta, D.; Mancini, A. M. Hydrogen transport vapor phase epitaxy of CdTe on hybrid substrates for X-ray detector applications. J. Electron. Mater. 1999, 28, 695–699.

    Article  Google Scholar 

  12. Taraci, J. L.; Hÿtch, M. J.; Clement, T.; Peralta, P.; McCartney, M. R.; Drucker, J.; Picraux, S. T. Strain mapping in nanowires. Nanotechnology 2005, 16, 2365–2371.

    Article  Google Scholar 

  13. Seo, H. W.; Bae, S. Y.; Park, J.; Yang, H.; Park, K. S.; Kim, S. Strained gallium nitride nanowires. J. Chem. Phys. 2002, 116, 9492–9499.

    Article  Google Scholar 

  14. Li, S.; Yang, G. W. Universal scaling of semiconductor nanowires bandgap. Appl. Phys. Lett., 2009, 95, 073106.

    Article  Google Scholar 

  15. Sarkar, S.; Pal, S.; Sarkar, P. Electronic structure and band gap engineering of CdTe semiconductor nanowires. J. Mater. Chem. 2012, 22, 10716–10724.

    Article  Google Scholar 

  16. Shi, W. S.; Zheng, Y. F.; Wang, N.; Lee, C. S.; Lee, S. T. Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Appl. Phys. Lett. 2001, 78, 3304–3306.

    Article  Google Scholar 

  17. Ebina, A.; Takahashi, T. Studies of clean and adatom treated surfaces of II–VI compounds. J. Cryst. Growth 1982, 59, 51–64.

    Article  Google Scholar 

  18. Shin, H. Y.; Sun, C. Y. The exciton and edge emissions in CdTe crystals. Mater. Sci. Eng. B 1998, 52, 78–83.

    Article  Google Scholar 

  19. Aguilar-Hernández, J.; Cárdenas-García, M.; Contreras-Puente, G.; Vidal-Larramendi, J. Analysis of the 1.55 eV PL band of CdTe polycrystalline films. Mater. Sci. Eng. B 2003, 102, 203–206.

    Article  Google Scholar 

  20. Kraft, C.; Metzner, H.; Hädrich, M.; Reislöhner, U.; Schley, P.; Gobsch, G.; Goldhahn, R. Comprehensive photoluminescence study of chlorine activated polycrystalline cadmium telluride layers. J. Appl. Phys. 2010, 108, 124503.

    Article  Google Scholar 

  21. Van Gheluwe, J.; Versluys, J.; Poelman, D.; Clauws, P. Photoluminescence study of polycrystalline CdS/CdTe thin film solar cells. Thin Solid Films 2005, 480–481, 264–268.

    Article  Google Scholar 

  22. Molva, E.; Francou, J. M.; Pautrat, J. L.; Saminadayar, K.; Dang, L. S. Electrical and optical properties of Au in cadmium telluride. J. Appl. Phys. 1984, 56, 2241–2249.

    Article  Google Scholar 

  23. Hildebrandt, S.; Uniewski, H.; Schreiber, J.; Leipner, H. S. Localization of Y luminescence at glide dislocations in cadmium telluride. J. Phys. III France 1997, 7, 1505–1514.

    Article  Google Scholar 

  24. Halliday, D. P.; Potter, M. D. G.; Mullins, J. T.; Brinkman, A. W. Photoluminescence study of a bulk vapour grown CdTe crystal. J. Cryst. Growth 2000, 220, 30–38.

    Article  Google Scholar 

  25. Bimberg, D.; Sondergeld, M. Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs. Phys. Rev. B 1971, 4, 3451–3455.

    Article  Google Scholar 

  26. Van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 1989, 39, 1871–1883.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Grace Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Lu, S., Chang, P. et al. Structural and optical verification of residual strain effect in single crystalline CdTe nanowires. Nano Res. 7, 228–235 (2014). https://doi.org/10.1007/s12274-013-0390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0390-y

Keywords

Navigation