Skip to main content
Log in

Mechanical Design of Translocating Motor Proteins

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Translocating motors generate force and move along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo transport, protein degradation, and muscle contraction. Advances in single molecule manipulation experiments, structural biology, and computational analysis are making it possible to consider common mechanical design principles of these diverse families of motors. Here, we propose a mechanical parts list that include track, energy conversion machinery, and moving parts. Energy is supplied not just by burning of a fuel molecule, but there are other sources or sinks of free energy, by binding and release of a fuel or products, or similarly between the motor and the track. Dynamic conformational changes of the motor domain can be regarded as controlling the flow of free energy to and from the surrounding heat reservoir. Multiple motor domains are organized in distinct ways to achieve motility under imposed physical constraints. Transcending amino acid sequence and structure, physically and functionally similar mechanical parts may have evolved as nature’s design strategy for these molecular engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2006). Direct observation of base-pair stepping by RNA polymerase. Nature, 438, 460–465.

    Article  Google Scholar 

  2. Adamovic, I., Mijailovich, S., & Karplus, M. (2008). The elastic properties of the structurally characterized myosin II S2 subdomain: A molecular dynamics and normal mode analysis. Biophysical journal, 94(10), 3779–3789.

    Article  PubMed  CAS  Google Scholar 

  3. Ali, M. Y., Krementsova, E. B., Kennedy, G. G., Mahaffy, R., Pollard, T. D., Trybus, K. M., & Warshaw, D. M. (2007). Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proceedings of the National Academy of Sciences of the United States of America, 104, 4332–4336.

    Article  PubMed  CAS  Google Scholar 

  4. Ali, M. Y., Lu, H., Bookwalter, C. S., Warshaw, D. M., & Trybus, K. M. (2008). Myosin V and kinesin act as tethers to enhance each others’ processivity. Proceedings of the National Academy of Sciences of the United States of America, 105, 4691–4696.

    Article  PubMed  CAS  Google Scholar 

  5. Asbury, C. L., Fehr, A. N., & Block, S. M. (2003). Kinesin moves by an asymmetric hand-over-hand mechanism. Science, 302, 2130–2134.

    Article  PubMed  CAS  Google Scholar 

  6. Astumian, R. D. (1997). Thermodynamics and kinetics of a Brownian motor. Science, 276, 917–922.

    Article  PubMed  CAS  Google Scholar 

  7. Block, S. M. (2007). Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping. Biophysical journal, 92, 2986–2995.

    Article  PubMed  CAS  Google Scholar 

  8. Block, S. M., Asbury, C. L., Shaevitz, J. W., & Lang, M. J. (2003). Probing the kinesin reaction cycle with a 2D optical force clamp. Proceedings of the National Academy of Sciences of the United States of America, 100, 2351–2356.

    Article  PubMed  CAS  Google Scholar 

  9. Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D., & Huber, R. (2000). The structures of HslU and the ATP-dependent protease HslU-HslV. Nature, 403, 800–805.

    Article  PubMed  CAS  Google Scholar 

  10. Brouhard, G. J., Stear, J. H., Noetzel, T. L., Al-Bassam, J., Kinoshita, K., Harrison, S. C., Howard, J., & Hyman, A. A. (2008). XMAP215 is a processive microtubule polymerase. Cell, 132, 79–88.

    Article  PubMed  CAS  Google Scholar 

  11. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J., & Oiwa, K. (2003). Dynein structure and power stroke. Nature, 421, 715–718.

    Article  PubMed  CAS  Google Scholar 

  12. Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical processes in biochemistry. Annual Review of Biochemistry, 73, 705–748.

    Article  PubMed  CAS  Google Scholar 

  13. Büttner, K., Nehring, S., & Hopfner, K.-P. (2007). Structural basis for DNA duplex separation by a superfamily-2 helicase. Nature Structural and Molecular Biology, 14, 647–662.

    Article  PubMed  Google Scholar 

  14. Chemla, Y. R., Aathavan, K., Michaelis, J., Grimes, S., Jardine, P. J., Anderson, D. L., & Bustamante, C. (2005). Mechanism of force generation of a viral DNA packaging motor. Cell, 122, 683–692.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, L. F., Winkler, H., Reedy, M. K., Reedy, M. C., & Taylor, K. A. (2002). Molecular modeling of averaged rigor crossbridges from tomograms of insect fight muscle. Journal of Structural Biology, 138, 92–104.

    Article  PubMed  CAS  Google Scholar 

  16. Choe, S., & Sun, S. X. (2005). The elasticity of α-helices. The Journal of Chemical Physics, 122, 244912.

    Article  PubMed  Google Scholar 

  17. Córdova, N. J., Ermentrout, B., & Oster, G. F. (1992). Dynamics of single-motor molecules: The thermal ratchet model. Proceedings of the National Academy of Sciences of the United States of America, 89, 339–343.

    Article  PubMed  Google Scholar 

  18. Cruz, E. M. D. L., Ostap, E. M., & Sweeney, H. L. (2001). Kinetic mechanism and regulation of myosin VI. The Journal of Biological Chemistry, 276, 32373–32381.

    Article  Google Scholar 

  19. Dixit, R., Ross, J. L., Goldman, Y. E., & Holzbaur, E. L. F. (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319, 1086–1089.

    Article  PubMed  CAS  Google Scholar 

  20. Endres, N. F., Yoshioka, C., Milligan, R. A., & Vale, R. D. (2006). A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Nature, 439, 875–878.

    Article  PubMed  CAS  Google Scholar 

  21. Forkey, J. N., Quinlan, M. E., & Goldman, Y. E. (2000). Protein structural dynamics by single-molecule fuorescence polarization. Progress in Biophysics and Molecular Biology, 74, 1–35.

    Article  PubMed  CAS  Google Scholar 

  22. Gao, Y. Q., Yang, W., & Karplus, M. (2005). A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell, 123, 195–205.

    Article  PubMed  CAS  Google Scholar 

  23. Geeves, M. A. & Holmes, K. C. (2005). The molecular mechanism of muscle contraction. Advances in Protein Chemistry, 71, 161–193.

    Article  PubMed  CAS  Google Scholar 

  24. Gelis, I., Bonvin, A. M., Keramisanou, D., Koukaki, M., Gouridis, G., Karamanou, S., Economou, A., & Kalodimos, C. G. (2007). Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell, 131, 756–769.

    Article  PubMed  CAS  Google Scholar 

  25. Gelles, J., & Landick, R. (1998). RNA polymerase as a molecular motor. Cell, 93, 13–16.

    Article  PubMed  CAS  Google Scholar 

  26. Gennerich, A., Carter, A. P., Reck-Peterson, S. L., & Vale, R. D. (2007). Force-induced bidirectional stepping of cytoplasmic dynein. Cell, 131, 952–965.

    Article  PubMed  CAS  Google Scholar 

  27. Goode, B. L., & Eck, M. J. (2007). Mechanism and function of formins in the control of actin assembly. Annual Review of Biochemistry, 76, 593–627.

    Article  PubMed  CAS  Google Scholar 

  28. Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858.

    Article  PubMed  CAS  Google Scholar 

  29. Hasson, T., & Cheney, R. E. (2001). Mechanisms of motor protein reversal. Current Opinion in Cell Biology, 13, 29–35.

    Article  PubMed  CAS  Google Scholar 

  30. Hengge, R., & Bukau, B. (2003). Proteolysis in prokaryotes: Protein quality control and regulatory principles. Molecular Microbiology, 49, 1451–1462.

    Article  PubMed  CAS  Google Scholar 

  31. Higashi-Fujime, S., Ishikawa, R., Iwasawa, H., Kagami, O., Kurimoto, E., Kohama, K., & Hozumi, T. (1995). The fastest-actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Letters, 375, 151–154.

    Article  PubMed  CAS  Google Scholar 

  32. Howard, J. (1997). Molecular motors: Structural adaptations to cellular functions. Nature, 389, 561–567.

    Article  PubMed  CAS  Google Scholar 

  33. Howard, J. (2001). Mechanics of motor proteins and the cytoskeleton. Sinauer: Sunderland, MA.

    Google Scholar 

  34. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD-Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  PubMed  CAS  Google Scholar 

  35. Hwang, W., Lang, M. J., & Karplus, M. (2008). Force generation in kinesin hinges on cover-neck bundle formation. Structure, 16, 62–71.

    Article  PubMed  CAS  Google Scholar 

  36. Jaud, J., Bathe, F., Schliwa, M., Rief, M., & Woehlke, G. (2006). Flexibility of the neck domain enhances Kinesin-1 motility under load. Biophysical Journal, 91, 1407–1412.

    Article  PubMed  CAS  Google Scholar 

  37. Keller, D., & Bustamante, C. (2000). The mechanochemistry of molecular motors. Biophysical Journal, 78, 541–556.

    Article  PubMed  CAS  Google Scholar 

  38. Khalil, A. S., Appleyard, D. C., Labno, A. K., Georges, A. Karplus, M., Belcher, A. M., Hwang, W., & Lang, M. J. (2008). Kinesin’s cover-neck bundle folds forward to generate force. Proceedings of the National Academy of Sciences of the United States of America, 105, 19247–19252.

    Article  PubMed  CAS  Google Scholar 

  39. Kikkawa, M. (2008). The role of microtubules in processive kinesin movement. Trends in Cell Biology, 18, 128–135.

    Article  PubMed  CAS  Google Scholar 

  40. Kikkawa, M., Sablin, E. P., Okada, Y., Yajima, H., Fletterick, R. J., & Hirokawa, N. (2001). Switch-based mechanism of kinesin motors. Nature, 411, 439–445.

    Article  PubMed  CAS  Google Scholar 

  41. Kolomeisky, A. B., & Fisher, M. E. (2007). Molecular motors: A theorist’s perspective. Annual Review of Physical Chemistry, 58, 675–695.

    Article  PubMed  CAS  Google Scholar 

  42. Kovall, R., & Matthews, B. W. (1997). Toroidal structure of λ-exonuclease. Science, 277, 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  43. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J., & Vale, R. D. (1996). Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature, 380, 550–555.

    Article  PubMed  CAS  Google Scholar 

  44. Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V. I., & Selvin, P. R. (2005). Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement?. Science, 308, 1469–1472.

    Article  PubMed  CAS  Google Scholar 

  45. Kuzminov, A. (1999). Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiology and Molecular Biology Reviews, 63, 751–813.

    PubMed  CAS  Google Scholar 

  46. Lakkaraju, S. K., & Hwang, W. (2009). Critical buckling length versus persistence length: What governs biofilament conformation?. Physical Review Letters, 102, 118102.

    Article  PubMed  Google Scholar 

  47. Li, H., DeRosier, D. J., Nicholson, W. V., Nogales, E., & Downing, K. H. (2002). Microtubule structure at 8 Å resolution. Structure, 10, 1317–1328.

    Article  PubMed  CAS  Google Scholar 

  48. Liu, J., Taylor, D. W., Krementsova, E. B., Trybus, K. M., & Taylor, K. A. (2006). Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature, 442, 208–211.

    PubMed  CAS  Google Scholar 

  49. Lymn, R. W., & Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10, 4617–4624.

    Article  PubMed  CAS  Google Scholar 

  50. Ma, Y. -Z., & Taylor, E. W. (1995). Kinetic mechanism of kinesin motor domain. Biochemistry, 34, 13233–13241.

    Article  PubMed  CAS  Google Scholar 

  51. Mallik, R., Carter, B. C., Lex, S. A., King, S. J., & Gross, S. P. (2004). Cytoplasmic dynein functions as a gear in response to load. Nature, 427, 649–652.

    Article  PubMed  CAS  Google Scholar 

  52. Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., & Cheney, R. E. (1999). Myosin-V is a processive actin-based motor. Nature, 400, 590–593.

    Article  PubMed  CAS  Google Scholar 

  53. Ménétrey, J., Bahloul, A., Wells, A. L., Yengo, C. M., Morris, C. A., Sweeney, H. L., & Houdusse, A. (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature, 435, 779–785.

    Article  PubMed  Google Scholar 

  54. Mori, T., Vale, R. D., & Tomishige, M. (2007). How kinesin waits between steps. Nature, 450, 750–755.

    Article  PubMed  CAS  Google Scholar 

  55. Moyer, M. L., Gilbert, S. P., & Johnson, K. A. (1998). Pathway of ATP hydrolysis by monomeric and dimeric kinesin. Biochemistry, 37, 800–813.

    Article  PubMed  CAS  Google Scholar 

  56. Nitta, R., Kikkawa, M., Okada, Y., & Hirokawa, N. (2004). KIF1A alternately uses two loops to bind microtubules. Science, 305, 678–683.

    Article  PubMed  CAS  Google Scholar 

  57. Oster, G., & Wang, H. (2003). How protein motors convert chemical energy into mechanical work. In Manfred Schliwa, (Ed.), Molecular motors (Chap. 8). Weinheim, Germany: Wiley-VCH.

  58. Park, J., Kahng, B., Kamm, R. D., & Hwang, W. (2006). Atomistic simulation approach to a continuum description of self-assembled β-sheet filaments. Biophysical Journal, 90, 2510–2524.

    Article  PubMed  CAS  Google Scholar 

  59. Rice, S., Cui, Y., Sindelar, C., Naber, N., Matuska, M., Vale, R., & Cooke, R. (2003). Thermodynamic properties of the kinesin neck-region docking to the catalytic core. Biophysical Journal, 84, 1844–1854.

    Article  PubMed  CAS  Google Scholar 

  60. Rice, S., Lin, A. W., Safer, D., Hart, C. L., Naberk, N., Carragher, B. O., Cain, S. M., Pechatnikova, E., Wilson-Kubalek, E. M. Whittaker, M., Pate, E., Cooke, R., Taylor, E. W., Milligan, R. A., & Vale, R. D. (1999). A structural change in the kinesin motor protein that drives motility. Nature, 402, 778–784.

    Article  PubMed  CAS  Google Scholar 

  61. Rock, R. S., Rice, S. E., Wells, A. L., Purcell, T. J., Spudich, J. A., & Sweeney, H. L. (2001). Myosin VI is a processive motor with a large step size. Proceedings of the National Academy of Sciences of the United States of America, 98, 13655–13659.

    Article  PubMed  CAS  Google Scholar 

  62. Rosenfeld, S. S., Jefferson, G. M., & King, P. H. (2001). ATP reorients the neck linker of kinesin in two sequential steps. The Journal of Biological Chemistry, 276, 40167–40174.

    Article  PubMed  CAS  Google Scholar 

  63. Rosenfeld, S. S., Xing, J., Jefferson, G. M., Cheung, H. C., & King, P. H. (2002). Measuring kinesin’s first step. The Journal of Biological Chemistry, 277, 36731–36739.

    Article  PubMed  CAS  Google Scholar 

  64. Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E., & Holzbaur, E. L. (2006). Processive bidirectional motion of dynein-dynactin complexes in vitro. Nature Cell Biology, 8, 562–570.

    Article  PubMed  CAS  Google Scholar 

  65. Sablin, E. P., & Fletterick, R. J. (2004). Coordination between motor domains in processive kinesins. The Journal of Biological Chemistry, 279, 15707–15710.

    Article  PubMed  CAS  Google Scholar 

  66. Schmidt, M., Lupas, A. N., & Finley, D. (1999). Structure and mechanism of ATP-dependent proteases. Current Opinion in Chemical Biology, 3, 584–591.

    Article  PubMed  CAS  Google Scholar 

  67. Seidel, R., & Dekker, C. (2007). Single-molecule studies of nucleic acid motors. Current Opinion in Structural Biology, 17, 80–86.

    Article  PubMed  CAS  Google Scholar 

  68. Selmer, M., Dunham, C. M., Murphy IV, F. V., Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R., & Ramakrishnan, V. (2006). Structure of the 70S ribosome complexed with mRNA and tRNA. Science, 313, 1935–1942.

    Article  PubMed  CAS  Google Scholar 

  69. Sindelar, C. V., Budny, M. J., Rice, S., Naber, N., Fletterick, R., & Cooke, R. (2002). Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy. Nature Structural Biology, 9, 844–848.

    PubMed  CAS  Google Scholar 

  70. Sindelar, C. V., & Downing, K. H. (2007). The beginning of kinesin’s force-generating cycle visualized at 9-Å resolution. The Journal of Cell Biology, 177, 377–385.

    Article  PubMed  CAS  Google Scholar 

  71. Smith, D. E., Tans, S. J., Smith, S. B., Grimes, S., Anderson, D. L., & Bustamante, C. (2001). The bacteriophage ϕ29 portal motor can package DNA against a large internal force. Nature, 413, 748–752.

    Article  PubMed  CAS  Google Scholar 

  72. Sosa, H., Peterman, E. J., Moerner, W., & Goldstein, L. S. (2001). ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nature Structural Biology, 8, 540–544.

    Article  PubMed  CAS  Google Scholar 

  73. Svoboda, K., Mitra, P. P., & Block, S. M. (1994). Fluctuation analysis of motor protein movement and single enzyme kinetics. Proceedings of the National Academy of Sciences of the United States of America, 91, 11782–11786.

    Article  PubMed  CAS  Google Scholar 

  74. Svoboda, K., Schmidt, C. F., Schnapp, B. J., & Block, S. M. (1993). Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365, 721–727.

    Article  PubMed  CAS  Google Scholar 

  75. Taniguchi, Y., Nishiyama, M., Ishii, Y., & Yanagida, T. (2005). Entropy rectifies the Brownian steps of kinesin. Nature Chemical Biology, 1, 342–347.

    Article  PubMed  CAS  Google Scholar 

  76. Uchimura, S., Oguchi, Y., Katsuki, M., Usui, T., Osada, H., Nikawa, J., Ishiwata, S., & Muto, E. (2006). Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin. The EMBO Journal, 25, 5932–5941.

    Article  PubMed  CAS  Google Scholar 

  77. Uyeda, T. Q. P., Abramson, P. D., & Spudich, J. A. (1996). The neck region of the myosin motor domain acts as a lever arm to generate movement. Proceedings of the National Academy of Sciences of the United States of America, 93, 4459–4464.

    Article  PubMed  CAS  Google Scholar 

  78. Vale, R. D. (2000). AAA proteins: Lords of the ring. The Journal of Cell Biology, 150, F13–F19.

    Article  PubMed  CAS  Google Scholar 

  79. Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. Cell, 112, 467–480.

    Article  PubMed  CAS  Google Scholar 

  80. Vale, R. D., & Milligan, R. A. (2000). The way things move: Looking under the hood of molecular motor proteins. Science, 288, 88–95.

    Article  PubMed  CAS  Google Scholar 

  81. Van Kampen, N. G. (1992). Stochastic processes in physics and chemistry. Elsevier: Netherlands.

    Google Scholar 

  82. van Oijen, A. M., Blainey, P. C., Crampton, D. J., Richardson, C. C., Ellenberger, T., & Xie, X. S. (2003). Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder. Science, 301, 1235–1238.

    Article  PubMed  Google Scholar 

  83. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R., & Molloy, J. E. (2002). The gated gait of the processive molecular motor, myosin V. Nature Cell Biology, 4, 59–65.

    Article  PubMed  CAS  Google Scholar 

  84. Wade, R. H., & Kozielski, F. (2000). Structural links to kinesin directionality and movement. Nature Structural Biology, 7, 456–460.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D., & Kornberg, R. D. (2006). Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis. Cell, 127, 941–954.

    Article  PubMed  CAS  Google Scholar 

  86. Wang, H., & Oster, G. (2002). Ratchets, power strokes, and molecular motors. Applied Physics A, 75, 315–323.

    Article  CAS  Google Scholar 

  87. Wang, H. -Y., Elston, T., Mogilner, A., & Oster, G. (1998). Force generation in RNA polymerase. Biophysical journal, 74, 1186–1202.

    Article  PubMed  CAS  Google Scholar 

  88. Wang, J. (2004). Nucleotide-dependent domain motions within rings of the RecA/AAA+ superfamily. Journal of Structural Biology, 148, 259–267.

    Article  PubMed  CAS  Google Scholar 

  89. Wang, M. D., Schnitzer, M. J., Yin, H., Landick, R., Gelles, J., & Block S. M. (1998). Force and velocity measured for single molecules of RNA polymerase. Science, 282, 902–907.

    Article  PubMed  CAS  Google Scholar 

  90. Weisenseel, J. P., Reddy, G. R., Marnett, L. J., & Stone, M. P. (2002). Structure of an oligodeoxynucleotide containing a 1,N-propanodeoxyguanosine adduct positioned in a palindrome derived from the Salmonella typhimurium hisD3052 gene: Hoogsteen pairing at pH 5.2. Chemical Research in Toxicology, 15, 127–139.

    Article  PubMed  CAS  Google Scholar 

  91. Yildiz, A., Tomishige, M., Gennerich, A., & Vale, R. D. (2008). Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell, 134, 1030–1041.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martin Karplus and anonymous reviewers for valuable input on the manuscript. This work was funded by the National Institute of Health grant R21NS058604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonmuk Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, W., Lang, M.J. Mechanical Design of Translocating Motor Proteins. Cell Biochem Biophys 54, 11–22 (2009). https://doi.org/10.1007/s12013-009-9049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9049-4

Keywords

Navigation