Skip to main content
Log in

Thermoelectric Performance Enhancement of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Composite Films by Addition of Dimethyl Sulfoxide and Urea

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Significant enhancement of thermoelectric (TE) performance was observed for free-standing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) composite films obtained from a PEDOT:PSS aqueous solution by simultaneous addition of dimethyl sulfoxide (DMSO) and different concentrations of urea. The electrical conductivity was enhanced from 8.16 S cm−1 to over 400 S cm−1, and the maximum Seebeck coefficient reached a value of 18.81 μV K−1 at room temperature. The power factor of the PEDOT:PSS composite films reached 8.81 μW m−1 K−2. The highest thermoelectric figure of merit (ZT) in this study was 0.024 at room temperature, which is at least one order of magnitude higher than most polymers and bulk Si. These results indicate that the obtained composite films are a promising thermoelectric material for applications in thermoelectric refrigeration and thermoelectric microgeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics, Chaps. 4 and 5 (Boca Raton, FL: CRC Press, 1995).

    Book  Google Scholar 

  2. F.X. Jiang, J.K. Xu, and B.Y. Lu, Chin. Phys. Lett. 25, 2202 (2008). doi:10.1088/0256-307X/25/6/076.

    Article  CAS  Google Scholar 

  3. C.C. Liu, F.X. Jiang, M.Y. Huang, R.R. Yue, B.Y. Lu, J.K. Xu, and G.D. Liu, J. Electron. Mater. 40, 648 (2011). doi:10.1007/s11664-010-1494-8.

    Article  CAS  Google Scholar 

  4. C.C. Liu, B.Y. Lu, J. Yan, J.K. Xu, R.R. Yue, Z.J. Zhu, S.Y. Zhou, X.J. Hu, Z. Zhang, and P. Chen, Synth. Met. 160, 2481 (2010). doi:10.1016/j.synthmet.2010.09.031.

    Article  CAS  Google Scholar 

  5. F.F. Kong, C.C. Liu, F.X. Jiang, J.K. Xu, B.Y. Lu, R.R. Yue, and S. Chen, International Conference on Digital Manufacturing & Automation, 2nd ed. (2010), p. 654. doi:10.1109/ICDMA.2010.460.

  6. F.F. Kong, C.C. Liu, J.K. Xu, F.X. Jiang, B.Y. Lu, R.R. Yue, G.D. Liu, and J.M. Wang, Chin. Phys. Lett. 28, 037201 (2011). doi:10.1088/0256-307X/28/3/037201.

    Article  Google Scholar 

  7. C.C. Liu, F.X. Jiang, M.Y. Huang, B.Y. Lu, R.R. Yue, and J.K. Xu, J. Electron. Mater. 40, 948 (2011). doi:10.1007/s11664-010-1465-0.

    Article  CAS  Google Scholar 

  8. Y. Hiroshige, M. Ookawa, and N. Toshim, Synth. Met. 157, 467 (2007). doi:10.1016/j.synthmet.2007.05.003.

    Article  CAS  Google Scholar 

  9. Y. Hiroshige, M. Ookawa, and N. Toshim, Synth. Met. 156, 1341 (2006). doi:10.1016/j.synthmet.2006.10.004.

    Article  CAS  Google Scholar 

  10. I. Lévesque, X. Gao, D.D. Klug, J.S. Tse, C.I. Ratcliffe, and M. Leclerc, React. Funct. Polym. 65, 23 (2005). doi:10.1016/j.reactfunctpolym.2004.11.008.

    Article  Google Scholar 

  11. I. Lévesque, P.-O. Bertrand, N. Blouin, M. Leclerc, S. Zecchin, G. Zotti, C.I. Ratcliffe, D.D. Klug, X. Gao, F. Gao, and J.S. Tse, Chem. Mater. 19, 2128 (2007). doi:10.1021/cm070063h.

    Article  Google Scholar 

  12. D. Kim, Y. Kim, K. Choi, J.C. Grunlan, and C. Yu, ACS Nano 4, 513 (2010). doi:10.1021/nn9013577.

    Article  CAS  Google Scholar 

  13. K.C. Chang, M.S. Jeng, C.C. Chou, Y.W. Yang, S.K. Wu, M.A. Thomas, and Y.C. Peng, J. Electron. Mater. 38, 1182 (2009). doi:10.1007/s11664-009-0821-4.

    Article  CAS  Google Scholar 

  14. B. Zhang, J. Sun, H.E. Katz, F. Fang, and R.L. Opila, ACS Appl. Mater. Inter. 2, 3170 (2010). doi:10.1021/am100654p.

    Article  CAS  Google Scholar 

  15. T.C. Tsai, H.C. Chang, C.H. Chen, and W.T. Whang, Org. Electron. 12, 2159 (2011). doi:10.1016/j.orgel.2011.09.004.

    Article  CAS  Google Scholar 

  16. K.W. Choi, D.Y. Kim, Y.S. Kim, J.C. Grunlan, C.G. Yu, HT2009: Proceedings of the ASME Summer Heat Transfer Conference, Vol. 1 (2009), p. 165. doi:10.1115/HT2009-88177

  17. M. Scholdt, H. Do, J. Lang, A. Gall, A. Colsmann, U. Lemmer, J.D. Koenig, M. Winkler, and H. Boettner, J. Electron. Mater. 39, 1589 (2010). doi:10.1007/s11664-010-1271-8.

    Article  CAS  Google Scholar 

  18. K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, and R.A. Segalman, Nano Lett. 10, 4664 (2010). doi:10.1021/nl102880k.

    Article  CAS  Google Scholar 

  19. C.Z. Meng, C.H. Liu, and S.S. Fan, Adv. Mater. 22, 535 (2010). doi:10.1002/adma.200902221.

    Article  CAS  Google Scholar 

  20. X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A.W. Denier Van Der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. de Schryver, and W.R. Salaneck, J. Polym. Sci., Part B: Polym. Phys. 41, 2561 (2003). doi:10.1002/polb.10659.

    Article  CAS  Google Scholar 

  21. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S.A. Choulis, Org. Electron. 10, 61 (2009). doi:10.1016/j.orgel.2008.10.008.

    Article  CAS  Google Scholar 

  22. S. Timpanaro, M. Kemerink, F.J. Touwslager, M.M. de Kok, and S. Schrader, Chem. Phys. Lett. 394, 339 (2004). doi:10.1016/j.cplett.2004.07.035.

    Article  CAS  Google Scholar 

  23. B.J. de Gans, P.C. Duineveld, and U.S. Schubert, Adv. Mater. 16, 203 (2004). doi:10.1002/adma.200300385.

    Article  Google Scholar 

  24. W.H. Kim, G.P. Kushto, H. Kim, Z.H. Kafafi, and J. Polym, J. Polym. Sci., Part B: Polym. Phys. 41, 2522 (2003). doi:10.1002/polb.10646.

    Article  CAS  Google Scholar 

  25. O.P. Dimitriev, D.A. Grinko, YuV Noskov, N.A. Ogurtsov, and A.A. Pud, Synth. Met. 159, 2237 (2009). doi:10.1016/j.synthmet.2009.08.022.

    Article  CAS  Google Scholar 

  26. D. Bagchi and R. Menon, Chem. Phys. Lett. 425, 114 (2006). doi:10.1016/j.cplett.2006.05.014.

    Article  CAS  Google Scholar 

  27. O.P. Dimitriev, Y.P. Piryatinski, and A.A. Pud, J. Phys. Chem. B 115, 1357 (2011). doi:10.1021/jp110545t.

    Article  CAS  Google Scholar 

  28. D.J. Yun, K.P. Hong, S. Kim, W.M. Yun, J. Jang, W.S. Kwon, C.E. Park, and S.W. Rhee, ACS Appl. Mater. Interfaces 3, 43 (2011). doi:10.1021/am1008375.

    Article  CAS  Google Scholar 

  29. Y.S. Hsiao, W.T. Whang, C.P. Chen, and Y.C. Chen, J. Mater. Chem. 18, 5948 (2008). doi:10.1039/b813079e.

    Article  CAS  Google Scholar 

  30. J.Y. Kim, J.H. Jung, D.E. Lee, and J. Joo, Synth. Met. 126, 311 (2002). doi:10.1016/s0379-6779(01),00576-8.

    Article  CAS  Google Scholar 

  31. L.A.A. Pettersson, S. Ghosh, and O. Inganäs, Org. Electron. 3, 143 (2002). doi:10.1016/S1566-1199(02),00051-4.

    Article  CAS  Google Scholar 

  32. S.K.M. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W. Denier van der Gon, W.R. Salaneck, and M. Fahlman, Synth. Met. 139, 1 (2003). doi:10.1016/S0379-6779(02),01259-6.

    Article  Google Scholar 

  33. J.Y. Ouyang, Q. Xu, C.W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer 45, 8443 (2004). doi:10.1016/j.polymer.2004.10.001.

    Article  CAS  Google Scholar 

  34. X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van, W.R. der Auweraer, M. Salaneck, and M. Berggren, Chem. Mater. 18, 4354 (2006). doi:10.1021/cm061032+.

    Article  CAS  Google Scholar 

  35. A.M. Nardes, M. Kemerink, M.M. de Kok, E. Vinken, K. Maturova, and R.A.J. Janssen, Org. Electron. 9, 727 (2008). doi:10.1016/j.orgel.2008.05.006.

    Article  CAS  Google Scholar 

  36. A.M. Nardes, R.A.J. Janssen, and M. Kemerink, Adv. Funct. Mater. 18, 865 (2008).

    Article  CAS  Google Scholar 

  37. M. Döbbelin, R. Marcilla, M. Salsamendi, C. Pozo–Gonzalo, P.M. Carrasco, J.A. Pomposo, and D. Mecerreyes, Chem. Mater. 19, 2147 (2007). doi:10.1021/cm070398z.

    Article  Google Scholar 

  38. J. Park, A. Lee, Y. Yim, and E. Han, Synth. Met. 161, 523 (2011). doi:10.1016/j.synthmet.2011.01.006.

    Article  CAS  Google Scholar 

  39. H.T. Ham, Y.S. Choi, M.G. Chee, M.H. Cha, and I.J. Chung, Polym. Eng. Sci. 48, 1 (2008). doi:10.1002/pen.20805.

    Article  CAS  Google Scholar 

  40. W.J. Hong, Y.X. Xu, G.W. Lu, C. Li, and G.Q. Shi, Electrochem. Commun. 10, 1555 (2008). doi:10.1016/j.elecom.2008.08.007.

    Article  CAS  Google Scholar 

  41. Y.F. Xu, Y. Wang, J.J. Liang, Y. Huang, Y.F. Ma, X.J. Wan, and Y.S. Chen, Nano. Res. 2, 343 (2009). doi:10.1007/s12274-009-9032-9.

    Article  CAS  Google Scholar 

  42. K.S. Choi, F. Liu, J.S. Choi, and T.S. Seo, Langmuir 26, 12902 (2010). doi:10.1021/la101698j.

    Article  CAS  Google Scholar 

  43. F. Faghani, Examensarbete (Norrköping: Linköping University, Physics and Electronics, 2010).

    Google Scholar 

  44. B.H. Fan, X.G. Mei, and J.Y. Ouyang, Macromolecules 41, 5971 (2008). doi:10.1021/ma8012459.

    Article  CAS  Google Scholar 

  45. Y.J. Xia and J.Y. Ouyang, ACS Appl. Mater. Interfaces 2, 474 (2010). doi:10.1021/am900708x.

    Article  CAS  Google Scholar 

  46. Y.J. Xia and J.Y. Ouyang, Macromolecules 42, 4141 (2009). doi:10.1021/ma900327d.

    Article  CAS  Google Scholar 

  47. Y.J. Xia and J.Y. Ouyang, Org. Electron. 11, 1129 (2010). doi:10.1016/j.orgel.2010.04.007.

    Article  CAS  Google Scholar 

  48. Y.J. Xia, H.M. Zhang, and J.Y. Ouyang, J. Mater. Chem. 20, 9740 (2010). doi:10.1039/c0jm01593h.

    Article  CAS  Google Scholar 

  49. Y.J. Xia and J.Y. Ouyang, J. Mater. Chem. 21, 4927 (2011). doi:10.1039/c0jm04177g.

    Article  CAS  Google Scholar 

  50. H. Yan, N. Ohta, and N. Toshima, Macromol. Mater. Eng. 286, 139 (2001). doi:10.1002/1439-2054(20010301).

    Article  CAS  Google Scholar 

  51. T.M. Tritt, H. Böttner, and L.D. Chen, MRS Bull. 33, 366 (2008).

    Article  CAS  Google Scholar 

  52. T.J. Wang, Y.Q. Qi, J.K. Xu, X.J. Hu, and P. Chen, Appl. Surf. Sci. 250, 188 (2005). doi:10.1016/j.apsusc.2004.12.051.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, F., Liu, C., Xu, J. et al. Thermoelectric Performance Enhancement of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Composite Films by Addition of Dimethyl Sulfoxide and Urea. J. Electron. Mater. 41, 2431–2438 (2012). https://doi.org/10.1007/s11664-012-2162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2162-y

Keywords

Navigation