Skip to main content
Log in

Thermoelectric Performance of Poly(3,4-Ethylenedioxy-thiophene)/Poly(Styrenesulfonate) Pellets and Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The thermoelectric performance of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) pellets and free-standing PEDOT/PSS films, prepared from PEDOT/PSS solution containing the additives dimethyl sulfoxide or ethylene glycol, have been systematically investigated. It has been found that the electrical conductivity of free-standing PEDOT/PSS films is invariably much higher than that of PEDOT/PSS pellets, while there is no distinct change in the Seebeck coefficient. The highest electrical conductivity of a free-standing PEDOT/PSS film can be up to 300 S cm−1, five to six times higher than that of PEDOT/PSS pellets (55 S cm−1). The thermal conductivity was measured over a wide temperature range, indicating that PEDOT/PSS has extremely low thermal conductivity. The figure of merit (ZT) of free-standing PEDOT/PSS films with good environmental stability can be up to 10−2, an order of magnitude higher than that of pressed PEDOT/PSS pellets (10−3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Shakouri and S. Li, Proceedings of International Conference on Thermoelectrics (Baltimore. MD, September, 1999), p. 402.

  2. B.C. Sales, Science 295, 1248 (2002).

    Article  CAS  Google Scholar 

  3. H. Ohta, Mater. Today 10, 44 (2007).

    Article  CAS  Google Scholar 

  4. M.V. Rozental, T.A. Skotheim, A. Melo, and M.I. Florit, J. Electroanal. Chem. 185, 297 (1985). doi:10.1016/0368-1874(85)80137-4.

    Article  Google Scholar 

  5. A. Ohtani, M. Abe, M. Ezoe, T. Doi, T. Miyata, and A. Miyata, Synth. Met. 57, 3696 (1993). doi:10.1016/0379-6779(93)90499-M.

    Article  CAS  Google Scholar 

  6. K. Hyodo, Electrochim. Acta 39, 265 (1994). doi:10.1016/0013-4686(94)80062-6.

    Article  CAS  Google Scholar 

  7. H. Yamato, M. Ohwa, and W. Wemet, Anal. Chem. 67, 2776 (1995). doi:10.1021/ac00113a009.

    Article  CAS  Google Scholar 

  8. M. Nohara, T. Ohno, and M. Matsumura, Synth. Met. 75, 65 (1995). doi:10.1016/0379-6779(95)03387-Y.

    Article  CAS  Google Scholar 

  9. M. Matsumura, T. Ohno, S. Saito, and M. Ochi, Chem. Mater. 8, 1370 (1996). doi:10.1021/cm950415x.

    Article  Google Scholar 

  10. Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met. 157, 467 (2007). doi:10.1016/j.synthmet.2007.05.003.

    Article  CAS  Google Scholar 

  11. A.B. Kaiser, Phys. Rev. B. 40, 2806 (1989).

    Article  Google Scholar 

  12. F. Yakuphanoglu and B.F. Senkal, J. Phys. Chem. C 111, 1840 (2007). doi:10.1021/jp0653050.

    Article  CAS  Google Scholar 

  13. J. Shi, S. Cong, G. Xue, H. Xiong, B. Mansdorf, and S.Z.D. Cheng, Adv. Mater. 14, 1492 (2002). doi:10.1002/1521-4095(20021016)14:20<1492.

    Article  Google Scholar 

  14. P.M. Carrasco, M. Cortazar, E. Ochoteco, E. Calahorra, and J.A. Pomposo, Surf. Interface Anal. 39, 26 (2007). doi:10.1002/sia.2457.

    Article  CAS  Google Scholar 

  15. I. Lévesque, P.O. Bertrand, N. Blouin, M. Leclerc, S. Zecchin, G. Zotti, C.I. Ratcliffe, D.D. Klug, X. Gao, F. Gao, and J.S. Tse, Chem. Mater. 19, 2128 (2007). doi:10.1021/cm070063h.

    Article  Google Scholar 

  16. F. Jonas and L. Schrader, Synth. Met. 41, 831 (1991). doi:10.1016/0379-6779(91)91506-6.

    Article  CAS  Google Scholar 

  17. G. Heywang and F. Jonas, Adv. Mater. 4, 116 (1992). doi:10.1002/adma.19920040213.

    Article  CAS  Google Scholar 

  18. A.J. Mäkinen, I.G. Hill, R. Shashidhar, N. Nikolov, and Z.H. Kafafi, Appl. Phys. Lett. 79, 557 (2001).

    Article  Google Scholar 

  19. J. Ouyang, Q.F. Xu, C.W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer 45, 8443 (2004). doi:10.1016/j.polymer.2004.10.001.

    Article  CAS  Google Scholar 

  20. X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C.V. Haesendonck, M.V.D. Auweraer, W.R. Salaneck, and M. Berggren, Chem. Mater. 18, 4354 (2006). doi:10.1021/cm061032+.

    Article  CAS  Google Scholar 

  21. X. Gao, K. Uehara, D.D. Klug, S. Patchkovskii, J.S. Tse, and T.M. Tritt, Phys. Rev. B. 72, 125202 (2005).

    Article  Google Scholar 

  22. L.B. Groenendaal, G. Zotti, P.H. Aubert, S.M. Waybright, and J.R. Reynolds, Adv. Mater. 15, 855 (2003). doi:10.1002/adma.200300376.

    Article  CAS  Google Scholar 

  23. F.X. Jiang, J.K. Xu, B.Y. Lu, Y. Xie, R.J. Huang, and L.F. Li, Chin. Phys. Lett. 25, 2202 (2008).

    Article  CAS  Google Scholar 

  24. D.M. Rowe, ed., CRC Handbook of Thermoelectrics, Chapters 4 and 5 (CRC Press, 1995).

  25. Y. Shinohara, K. Hiraishi, H. Nakanishi, Y. Isoda, and Y. Imai, Trans. Mater. Res. Soc. Jap. 30, 963 (2005).

    CAS  Google Scholar 

  26. G.J. Snyder, M. Christensen, E. Nishibor, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  CAS  Google Scholar 

  27. J. Feng and T.W. Ellis, Synth. Met. 135, 155 (2002). doi:10.1016/S0379-6779(02)00606-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Jiang, F., Huang, M. et al. Thermoelectric Performance of Poly(3,4-Ethylenedioxy-thiophene)/Poly(Styrenesulfonate) Pellets and Films. J. Electron. Mater. 40, 648–651 (2011). https://doi.org/10.1007/s11664-010-1494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1494-8

Keywords

Navigation