Skip to main content
Log in

Mathematical method in optical molecular imaging

光学分子影像中的数学方法

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Optical molecular imaging is an important technique of studies at molecular level and provides promising tools to non-invasively delineate in vivo physiological and pathological activities at cellular and molecular levels, and it has been widely used for diagnosing, managing diseases, metastasis detection and drug development. From a mathematical perspective, this paper mainly focuses on the forward problem and inverse problem in biological tissues based on the radiative transfer equation (RTE). The forward problem is accustomed to describing photon propagation in biological tissues and the inverse problem is used to reconstruct internal source distribution from the signal detected on the external surface. We also introduce the detailed derivation of the RTE and Robin boundary condition and discretization of the forward problem, along with the reconstruction methods and iterative solution algorithms summarized for the inverse problem. Finally, the current and future challenges of optical molecular imaging are discussed. This survey aims to construct a mathematical method, a state-of-the-art framework for optical molecular imaging, from which future research may benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weissleder R, Pittet M J. Imaging in the era of molecular oncology. Nature, 2008, 452: 580–589

    Article  Google Scholar 

  2. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med, 2003, 9: 123–128

    Article  Google Scholar 

  3. Tian J. Molecular Imaging: Fundamentals and Application. Hangzhou: Zhejiang University Press, 2012

    Google Scholar 

  4. Weissleder R, Mahmood U. Molecular imaging. Radiology, 2001, 219: 316–333

    Article  Google Scholar 

  5. Mssound T F, Gambhir S S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Gene Dev, 2003, 17: 545–580

    Article  Google Scholar 

  6. Cherry S R. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol, 2004, 49: R13–R48

    Article  Google Scholar 

  7. Ntziachristos V, Ripoll J, Wang L V, et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol, 2005, 23: 313–320

    Article  Google Scholar 

  8. Weissleder R. Molecular imaging in cancer. Science, 2006, 312: 1168–1171

    Article  Google Scholar 

  9. Willmann J K, van Bruggen N, Dinkelborg L M, et al. Molecular imaging in drug development. Nat Rev Drug Discov, 2008, 7: 591–607

    Article  Google Scholar 

  10. Lv Y J. Research of inverse problems in bioluminescence tomography (in Chinese). Dissertation for the Doctoral Degree. Beijing: Institute of Automation, Chinese Academy of Sciences, 2007

    Google Scholar 

  11. Arridge S R, Hebden J C. Optical imaging in medicine: II. Modelling and reconstruction. Phys Med Biol, 1997, 42: 841–853

    Article  Google Scholar 

  12. Gibson A P, Hebden J C, Arridge S R. Recent advances in diffuse optical imaging. Phys Med Biol, 2005, 50: R1–R43

    Article  Google Scholar 

  13. Harrach B. On uniqueness in diffuse optical tomography. Inverse Probl, 2009, 25: 055010

    Article  MathSciNet  Google Scholar 

  14. Boas D A, Brooks D H, Miller E L, et al. Imaging the body with diffuse optical tomography. IEEE Signal Proc Mag, 2001, 18: 57–75

    Article  Google Scholar 

  15. Arridge S R, Schotland J C. Optical tomography: forward and inverse problems. Inverse Probl, 2009, 25: 123010

    Article  Google Scholar 

  16. Contag C H, Bachmann M H. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng, 2002, 4: 235–260

    Article  Google Scholar 

  17. Wang G, Hoffman E A, McLennan G, et al. Development of the first bioluminescent CT scanner. Radiology, 2003, 229: 566

    Google Scholar 

  18. Wang G, Shen H O, Cong W X, et al. Temperature-modulated bioluminescence tomography. Opt Express, 2006, 14: 7852–7871

    Article  Google Scholar 

  19. Wang G, Cong W X, Durairaj K, et al. In vivo mouse studies with bioluminescence tomography. Opt Express, 2006, 14: 7801–7809

    Article  Google Scholar 

  20. Cong W X, Wang G, Kumar D, et al. Practical reconstruction method for bioluminescence tomography. Opt Express, 2005, 13: 6756–6771

    Article  Google Scholar 

  21. Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Med Phys, 2004, 31: 2289–2299

    Article  Google Scholar 

  22. Jiang M, Zhou T, Cheng J T, et al. Image reconstruction for bioluminescence tomography from partial measurement. Opt Express, 2007, 15: 11095–11116

    Article  Google Scholar 

  23. Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol, 2003, 13: 195–208

    Google Scholar 

  24. Ntziachristos V, Tung C H, Bremer C, et al. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med, 2002, 8: 757–760

    Article  Google Scholar 

  25. Ntziachristos V, Schellenberger E A, Ripoll J, et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Nat Acad Sci, 2004, 101: 12294–12299

    Article  Google Scholar 

  26. Deliolanis N, Lasser T, Hyde D, et al. Free-space fluorescence molecular tomography utilizing 360° geometry projections. Opt Lett, 2007, 32: 382–384

    Article  Google Scholar 

  27. Tan Y, Jiang H. DOT guided fluorescence molecular tomography of arbitrarily shaped objects. Med Phys, 2008, 35: 5703–5707

    Article  Google Scholar 

  28. Zhang B, Liu S Q, Cao X, et al. Fluorescence tomography reconstruction with simultaneous positron emission tomography priors. IEEE Trans Multimedia, 2013, 15: 1031–1038

    Article  MathSciNet  Google Scholar 

  29. Robertson R, Germanos M S, Li C, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol, 2009, 54: N355–N365

    Article  Google Scholar 

  30. Li C Q, Mitchell G S, Cherry S R. Cerenkov luminescence tomography for small-animal imaging. Opt Lett, 2010, 35: 1109–1111

    Article  Google Scholar 

  31. Hu Z H, Liang J M, Yang W D, et al. Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express, 2010, 18: 24441–24450

    Article  Google Scholar 

  32. Spinelli A E, D’Ambrosio D, Calderan L, et al. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol, 2010, 55: 483–495

    Article  Google Scholar 

  33. Ruggiero A, Holland J P, Lewis J S, et al. Cerenkov luminescence imaging of medical isotopes. J Nucl Med, 2010, 51: 1123–1130

    Article  Google Scholar 

  34. Xu Y D, Chang E, Liu H G, et al. Proof-of-concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging. J Nucl Med, 2012, 53: 312–317

    Article  Google Scholar 

  35. Klose A D, Ntziachristos V, Hielscher A. The inverse source problem based on the radiative transfer equation in optical molecular imaging. J Comput Phys, 2005, 202: 323–345

    Article  MATH  Google Scholar 

  36. Wang L V, Wu H I. Biomedical Optics: Principles and Imaging. Wiley-Interscience, 2007

    Google Scholar 

  37. Rice B W, Cable M D, Nelson M B. In vivo imaging of light-emitting probes. J Biomed Opt, 2001, 6: 432–440

    Article  Google Scholar 

  38. Chandrasekhar S. Radiative Transfer. Oxford: Clarendon Press, 1950

    MATH  Google Scholar 

  39. Born M, Wolf E. Principals of Optics. 7th ed. Cambridge: Cambridge University Press, 1999

    Book  Google Scholar 

  40. Qin C H. Research of bioluminescence tomography based on meshless method and construction of BLT prototype system (in Chinese). Dissertation for the Doctoral Degree. Beijing: Institute of Automation, Chinese Academy of Sciences, 2009

    Google Scholar 

  41. Ishimaru A. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1977

    Google Scholar 

  42. Toublanc D. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. Appl Optics, 1996, 35: 3270–3274

    Article  Google Scholar 

  43. Schweiger M, Arridge S R, Hiraoka M, et al. The finite element method for the propagation of light in scattering media: boundary and source conditions. Med Phys, 1995, 22: 1779–1792

    Article  Google Scholar 

  44. Wang L V, Jacques S L, Zheng L Q. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Comput Meth Prog Bio, 1995, 47: 131–146

    Article  Google Scholar 

  45. Boas D, Culver J, Stott J, et al. Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt Express, 2002, 10: 159–170

    Article  Google Scholar 

  46. Li H, Tian J, Zhu F, et al. A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. Acad Radiol, 2004, 11: 1029–1038

    Article  Google Scholar 

  47. Ren N N, Liang J M, Qu X C, et al. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt Express, 2010, 18: 6811–6823

    Article  Google Scholar 

  48. Gu X J, Xu Y, Jiang H B. Mesh-based enhancement schemes in diffuse optical tomography. Med Phys, 2003, 30: 861–869

    Article  Google Scholar 

  49. Culver J P, Choe R, Holboke M J, et al. Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys, 2003, 30: 235–247

    Article  Google Scholar 

  50. Qin C H, Tian J, Yang X, et al. Galerkin-based meshless methods for photon transport in the biological tissue. Opt Express, 2008, 16: 20317–20333

    Article  Google Scholar 

  51. Lv Y J, Tian J, Cong W X, et al. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt Express, 2006, 14: 8211–8223

    Article  Google Scholar 

  52. Razansky D, Ntziachristos V. Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion. Med Phys, 2007, 34: 4293–4301

    Article  Google Scholar 

  53. Wang D F, Liu X, Chen Y P, et al. A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media. IEEE Trans Inf Technol Biomed, 2009, 13: 766–773

    Article  Google Scholar 

  54. Zhong J H, Tian J, Yang X, et al. Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann Biomed Eng, 2011, 39: 1728–1735

    Article  Google Scholar 

  55. Qin C H, Tian J, Lv Y J, et al. Three-dimensional bioluminescent source reconstruction method based on nodes of adaptive FEM. In: Proceedings of SPIE 6916, Progress in Biomedical Optics and Imaging. San Diego: SPIE, 2008. 69161K

    Google Scholar 

  56. Tian J, Bai J, Yan X P, et al. Multimodality molecular imaging. IEEE Eng Med Biol, 2008, 27: 48–57

    Article  Google Scholar 

  57. Cong A X, Wang G. Multispectral bioluminescence tomography: methodology and simulation. Int J Biomed Imag, 2006, 2006: 57614

    Article  Google Scholar 

  58. Dehghani H, Davis S C, Pogue B W. Spectrally resolved bioluminescence tomography using the reciprocity approach. Med Phys, 2008, 35: 4863–4871

    Article  Google Scholar 

  59. Gong R F, Wang G, Cheng X L, et al. A novel approach for studies of multispectral bioluminescence tomography. Numer Math, 2010, 115: 553–583

    Article  MATH  MathSciNet  Google Scholar 

  60. Lv Y J, Tian J, Cong W X, et al. Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation. Phys Med Biol, 2007, 52: 4497–4512

    Article  Google Scholar 

  61. Svenmarker P, Xu C T, Liu H C, et al. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles. Appl Phys Lett, 2014, 104: 073703

    Article  Google Scholar 

  62. Feng J C, Jia K B, Yan G R, et al. An optimal permissible source region strategy for multispectral bioluminescence tomography. Opt Express, 2008, 16: 15640–15654

    Article  Google Scholar 

  63. Naser M A, Patterson M S. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties. Biomed Opt Express, 2010, 1: 512–526

    Article  Google Scholar 

  64. Qin C H, Zhu S P, Feng J C, et al. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method. J Biophoton, 2011, 4: 824–839

    Article  Google Scholar 

  65. Naser M A, Patterson M S. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region. Biomed Opt Express, 2011, 2: 168–184

    Google Scholar 

  66. Lu Y, Machado H B, Douraghy A, et al. Experimental bioluminescence tomography with fully parallel radiativetransfer-based reconstruction framework. Opt Express, 2009, 17: 16681–16695

    Article  Google Scholar 

  67. Guo W, Jia K B, Zhang Q, et al. Sparse reconstruction for bioluminescence tomography based on the semigreedy method. Comput Math Method Med, 2012, 2012: 494808

    Article  MathSciNet  Google Scholar 

  68. Xu Z, Bai J. Analysis of finite-element-based methods for reducing the ill-posedness in the reconstruction of fluorescence molecular tomography. Prog Nat Sci, 2009, 19: 501–509

    Article  MathSciNet  Google Scholar 

  69. Han R Q, Liang J M, Qu X C, et al. A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography. Opt Express, 2009, 17: 14481–14494

    Article  Google Scholar 

  70. Guo H B, Hou Y Q, He XW. Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation. J Innov Opt Heal Sci, 2014, 7: 1350057

    Article  Google Scholar 

  71. Lv Y J, Tian J, Cong W X, et al. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt Express, 2006, 14: 8211–8223

    Article  Google Scholar 

  72. Yu J J, He X W, Geng G H, et al. Hybrid multilevel sparse reconstruction for a whole domain bioluminescence tomography using adaptive finite element. Comput Math Method Med, 2013, 2013: 548491

    MathSciNet  Google Scholar 

  73. Zhang B, Yang X, Qin C H, et al. A trust region method in adaptive finite element framework for bioluminescence tomography. Opt Express, 2010, 18: 6477–6491

    Article  Google Scholar 

  74. He X W, Hou Y B, Chen D F, et al. Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method. Int J Biomed Imag, 2011, 2011: 203537

    Article  Google Scholar 

  75. Tikhonov A N, Aresenin V Y. Solutions of ill-posed Problems. Washington DC: V. H. Winston and Sons, 1977

    MATH  Google Scholar 

  76. Cao N, Nehorai A, Jacobs M. Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization. Opt Express, 2007, 15: 13695–13708

    Article  Google Scholar 

  77. Gao H, Zhao H K. Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization. Opt Express, 2010, 18: 1854–1871

    Article  Google Scholar 

  78. Zeng J S, Fang J, Xu Z B. Sparse SAR imaging based on L 1/2 regularization. Sci China Inf Sci, 2012, 55: 1755–1775

    Article  MATH  MathSciNet  Google Scholar 

  79. Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  80. Yu J J, Liu F, Wu J, et al. Fast source reconstruction for bioluminescence tomography based on sparse regularization. IEEE Trans Biomed Eng, 2010, 57: 2583–2586

    Article  Google Scholar 

  81. Zhong J H, Tian J, Yang X, et al. L 1-regularized Cerenkov luminescence tomography with a SP 3 method and CT fusion. In: Proceedings of the Annual International Conference of the Engineering in Medicine and Biology Society. Boston: IEEE, 2011. 6158–6161

    Google Scholar 

  82. Zhang Q T, Chen X L, Xu X C, et al. Comparative studies of l p-regularization-based reconstruction algorithms for bioluminescence tomography. Biomed Opt Express, 2012, 3: 2816–2836

    Google Scholar 

  83. Yi H J, Chen D F, Li W, et al. Reconstruction algorithms based on l 1-norm and l 2-norm for two imaging models of fluorescence molecular tomography: a comparative study. J Biomed Opt, 2013, 18: 56013

    Article  Google Scholar 

  84. Cao X, Zhang B, Wang X, et al. An adaptive Tikhonov regularization method for fluorescence molecular tomography. Med Biol Eng Comput, 2013, 51: 849–858

    Article  Google Scholar 

  85. Shi J W, Liu F, Zhang G L, et al. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm. J Biomed Opt, 2014, 19: 046018

    Article  Google Scholar 

  86. Ye J Z, Chi C W, Xue Z W, et al. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method. Biomed Opt Express, 2014, 5: 387–406

    Article  Google Scholar 

  87. Zhu D W, Li C Q. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement. Phys Med Biol, 2014, 59: 2901–2912

    Article  Google Scholar 

  88. Feng J C, Qin C H, Jia K B, et al. Total variation regularization for bioluminescence tomography with the split Bregman method. Appl Optics, 2012, 51: 4501–4512

    Article  Google Scholar 

  89. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D, 1992, 60: 259–268

    Article  MATH  Google Scholar 

  90. Zhu Y G, Shi Y Y. A fast method for reconstruction of total-variation MR images with a periodic boundary condition. IEEE Signal Proc Lett, 2013, 20: 291–294

    Article  Google Scholar 

  91. Yao L, Jiang H B. Enhancing finite element-based photoacoustic tomography using total variation minimization. Appl Optics, 2011, 50: 5031–5041

    Article  Google Scholar 

  92. Gao H, Zhao H K. Multilevel bioluminescence tomography based on radiative transfer equation. Part 2: total variation and l1 data fidelity. Opt Express, 2010, 18: 2894–2912

    Article  Google Scholar 

  93. Dutta J, Ahn S, Li C Q, et al. Joint L 1 and total variation regularization for fluorescence molecular tomography. Phys Med Biol, 2012, 57: 1459–1476

    Article  Google Scholar 

  94. Jin W M, He Y H. Iterative reconstruction for bioluminescence tomography with total variation regularization. In: Proceedings of SPIE 8553, Optics in Heath Care and Biomedical Optics V. Beijing: SPIE, 2012. 855333

    Google Scholar 

  95. Cabello J, Torres-Espallardo I, Gillam J E, et al. PET reconstruction from truncated projections using total-variation regularization for hadron therapy monitoring. IEEE Trans Nucl Sci, 2013, 60: 3364–3372

    Article  Google Scholar 

  96. Schweiger M, Arridge S R, Nissilä I. Gauss-Newton method for reconstruction in diffusion optical tomography.Phys Med Biol, 2005, 50: 2365–2386

    Article  Google Scholar 

  97. He X W, Liang J M, Wang X R, et al. Sparse regularization for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method. Opt Express, 2010, 18: 24825–24841

    Article  Google Scholar 

  98. Freiberger M, Clason C, Scharfetter H. Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach. Appl Optics, 2010, 49: 3741–3747

    Article  Google Scholar 

  99. Zhang Q T, Zhao H, Chen D F, et al. Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography. Opt Commun, 2011, 284: 5871–5876

    Article  Google Scholar 

  100. Han D, Tian J, Zhu S P, et al. A fast reconstruction for fluorescence molecular tomography with sparsity regularization. Opt Express, 2010, 18: 8630–8646

    Article  Google Scholar 

  101. Wu P, Liu K, Zhang Q, et al. Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid opitcal/microcomputed in tomography imaging. J Biomed Opt, 2012, 17: 126012

    Article  Google Scholar 

  102. Goldstein T, Osher S. The Split Bregman method for L1 regularized problems. SIAM J Imag Sci, 2009, 2: 323–343

    Article  MATH  MathSciNet  Google Scholar 

  103. Abascal J F, Chamorro-Servent J, Aguirre J, et al. Fluorescence diffuse optical tomography using the split Bregman method. Med Phys, 2011, 38: 6275–6284

    Article  Google Scholar 

  104. Zhang H, Cheng L Z, Li J P. Reweighted minimization model for MR image reconstruction with split Bregman method. Sci China Inf Sci, 2012, 55: 2109–2118

    Article  MATH  MathSciNet  Google Scholar 

  105. Nikazad T, Davidi R, Herman G T. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inverse Probl, 2012, 28: 035005

    Article  MathSciNet  Google Scholar 

  106. Ding X T, Wang K, Jie B, et al. Probability method for Cerenkov luminescence tomography based on conformance error minimization. Biomed Opt Express, 2014, 5: 2091–2112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, C., Tian, J. Mathematical method in optical molecular imaging. Sci. China Inf. Sci. 58, 1–13 (2015). https://doi.org/10.1007/s11432-014-5222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5222-5

Keywords

关键词

Navigation