Skip to main content

Advertisement

Log in

Use of EDTA to minimize ionic strength dependent frequency shifts in the 1H NMR spectra of urine

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The 1H NMR spectrum of urine exhibits a large number of detectable metabolites and is, therefore, highly suitable for the study of perturbations caused by disease, toxicity, nutrition or environmental factors in humans and animals. However, variations in the chemical shifts and intensities due to altered pH and ionic strength present a challenge in NMR-based studies. With a view towards understanding and minimizing the effects of these variations, we have extensively studied the effects of ionic strength and pH on the chemical shifts of common urine metabolites and their possible reduction using EDTA (ethylenediaminetetraacetic acid). 1H NMR chemical shifts for alanine, citrate, creatinine, dimethylamine, glycine, histidine, hippurate, formate and the internal reference, TSP (trimethylsilylpropionic acid-d4, sodium salt) obtained under different conditions were used to assess each effect individually. EDTA minimizes the frequency shifts of the metabolites that have a propensity for metal binding. Chelation of such metal ions is evident from the appearance of signals from EDTA complexed to divalent metal ions such as calcium and magnesium. Not surprisingly, increasing the buffer concentration or buffer volume also minimizes pH dependent frequency shifts. The combination of EDTA and an appropriate buffer effectively minimizes both pH dependent frequency shifts and ionic strength dependent intensity variations in urine NMR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alum, M. F., Shaw, P. A., Sweatman, B. C., Ubhi, B. K., Haselden, J. N., & Connor, S. C. (2008). 4,4-Dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA), a promising universal internal standard for NMR-based metabolic studies of biofluids, including blood plasma and serum. Metabolomics, 4, 122–127.

    Article  CAS  Google Scholar 

  • Bales, J. R., Higham, D. P., Howe, I., Nicholson, J. K., & Salder, P. J. (1984). Use of high resolution nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clinical Chemistry, 30, 426–432.

    PubMed  CAS  Google Scholar 

  • Beckonert, O., Keun, H. C., Ebbels, T. M. D., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomics and metabonomic procedure for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2, 2692–2703. doi:10.1038/nprot.2007.376.

    Article  PubMed  CAS  Google Scholar 

  • Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W. L., et al. (2003). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine, 8, 1439–1445. doi:10.1038/nm802.

    Article  CAS  Google Scholar 

  • Carubelli, R., Smith, W. O., & Hammarsten, J. F. (1959). Determination of magnesium and calcium in urine. Clinical Chemistry, 5, 45–49.

    PubMed  CAS  Google Scholar 

  • Chen, H., Pan, Z., Talaty, N., Raftery, D., & Cooks, R. G. (2006). Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid Communications in Mass Spectrometry, 20, 1577–1584. doi:10.1002/rcm.2474.

    Article  PubMed  CAS  Google Scholar 

  • Christian, G. D. (2004). Analytical chemistry (6th ed.). Hoboken, NJ: John Wiley& Sons.

    Google Scholar 

  • Clayton, T. A., Lindon, J. C., Cloarec, O., Antti, H., Charuel, C., Hanton, G., et al. (2006). Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature, 440, 1073–1077. doi:10.1038/nature04648.

    Article  PubMed  CAS  Google Scholar 

  • Cloarec, O., Dumas, M. E., Trygg, J., Craig, A., Barton, R. H., Lindon, J. C., et al. (2005). Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry, 77, 517–526. doi:10.1021/ac048803i.

    Article  PubMed  CAS  Google Scholar 

  • Constantinou, M. A., Papakonstantinou, E., Spraul, M., Sevastiadou, S., Costalos, C., Koupparis, M. A., et al. (2005). 1H NMR-based metabonomics for the diagnosis of inborn errors of metabolism in urine. Analytica Chimica Acta, 542, 169–177. doi:10.1016/j.aca.2005.03.059.

    Article  CAS  Google Scholar 

  • Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K., & Lindon, J. C. (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Analytical Chemistry, 78, 2262–2267. doi:10.1021/ac0519312.

    Article  PubMed  CAS  Google Scholar 

  • Gu, H., Chen, H., Pan, Z., Jackson, A. U., Talaty, N., Xi, B., et al. (2007). Monitoring diet effects via biofluids and their implications for metabolomics studies. Analytical Chemistry, 79, 89–97. doi:10.1021/ac060946c.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, E., Nicholls, A. W., Lindon, J. C., Connor, S. C., Connelly, J. C., Haselden, J. N., et al. (2000). Chemometric models for toxicity classification based on NMR spectra of biofluids. Chemical Research in Toxicology, 13, 471–478. doi:10.1021/tx990210t.

    Article  PubMed  CAS  Google Scholar 

  • Lauridsen, M., Hansen, S. H., Jaroszewski, J. W., & Cornett, C. (2007). Human urine as test material in 1H NMR-based metabonomics: Recommendations for sample preparation and storage. Analytical Chemistry, 79, 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, E. M., Bright, J., Wilson, I. D., Hughes, A., Morrisson, J., Lindberg, H., et al. (2004). Metabonomics, dietary influences and cultural differences: A 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. Journal of Pharmaceutical and Biomedical Analysis, 36, 841–849. doi:10.1016/j.jpba.2004.08.002.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2004). Metabonomics: Systems biology in pharmaceutical research and development. Current Opinion in Molecular Therapeutics, 6, 265–272.

    PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2007). Metabonomics in pharmaceutical R & D. The FEBS Journal, 274, 1140–1151. doi:10.1111/j.1742-4658.2007.05673.x.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). NMR spectroscopy of biofluids. Annual Reports on NMR Spectroscopy, 38, 1–88.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., Holmes, E., & Everett, J. R. (2000). Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance, 12, 289–320. doi :10.1002/1099-0534(2000)12:5≤289::AID-CMR3≥3.0.CO;2-W.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., Holmes, E., et al. (2005). Summary recommendations for standardization and reporting of metabolic analyses. Nature Biotechnology, 23, 833–838. doi:10.1038/nbt0705-833.

    Article  PubMed  CAS  Google Scholar 

  • Miyataka, H., Ozaki, T., & Himeno, S. (2007). Effects of pH of 1H-NMR spectroscopy of mouse urine. Biological and Pharmaceutical Bulletin, 30, 667–670. doi:10.1248/bpb.30.667.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189. doi:10.1080/004982599238047.

    Article  PubMed  CAS  Google Scholar 

  • Odunsi, K., Wollman, R. M., Ambrosone, C. B., Hutson, A., McCann, S. E., Tammela, J., et al. (2005). Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. International Journal of Cancer, 113, 782–788. doi:10.1002/ijc.20651.

    Article  CAS  Google Scholar 

  • Pan, Z., Gu, H. W., Talaty, N., Chen, H. W., Shanaiah, N., Hainline, B. E., et al. (2007). Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism. Analytical and Bioanalytical Chemistry, 387, 539–549. doi:10.1007/s00216-006-0546-7.

    Article  PubMed  CAS  Google Scholar 

  • Pybus, J. (1969). Determination of calcium and magnesium in serum and urine by atomic absorption spectrophotometry. Clinica Chimica Acta, 23, 309–317. doi:10.1016/0009-8981(69)90046-1.

    Article  CAS  Google Scholar 

  • Reo, N. V. (2002). NMR-based metabolomics. Drug and Chemical Toxicology, 25, 375–382. doi:10.1081/DCT-120014789.

    Article  PubMed  CAS  Google Scholar 

  • Rezzi, S., Ramadan, Z., Fay, L. B., & Kochhar, S. (2007). Nutritional metabonomics: Applications and perspectives. Journal of Proteome Research, 6, 513–525. doi:10.1021/pr060522z.

    Article  PubMed  CAS  Google Scholar 

  • Saude, E. J., & Sykes, B. D. (2007). Urine stability for metabolomic studies: Effects of preparation and storage. Metabolomics, 3, 19–27. doi:10.1007/s11306-006-0042-2.

    Article  CAS  Google Scholar 

  • Schlotterbeck, G., Ross, A., Dieterle, F., & Senn, H. (2006). Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics, 7, 1055–1075. doi:10.2217/14622416.7.7.1055.

    Article  PubMed  CAS  Google Scholar 

  • Shanaiah, N., Desilva, M. A., Nagana Gowda, G. A., Raftery, M. A., Hainline, B. E., & Raftery, D. (2007). Class selection of amino acid metabolites in body Fluids using chemical derivatization and their enhanced 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 104, 11540–11544. doi:10.1073/pnas.0704449104.

    Article  PubMed  CAS  Google Scholar 

  • Silwood, C. J. L., Grootveld, M., & Lynch, E. (2002). 1H NMR investigation of the molecular nature of low-molecular mass calcium ions in biofluids. Journal of Biological Inorganic Chemistry, 7, 46–57. doi:10.1007/s007750100264.

    Article  PubMed  CAS  Google Scholar 

  • Somashekar, B. S., Ijare, O. B., Nagana Gowda, G. A., Ramesh, V., Gupta, S., & Khetrapal, C. L. (2006). Simple pulse-acquire NMR methods for the quantitative analysis of calcium, magnesium and sodium in human serum. Spectrochimica Acta Part A, 65, 254–260. doi:10.1016/j.saa.2005.10.039.

    Article  CAS  Google Scholar 

  • Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84, 531–539.

    PubMed  CAS  Google Scholar 

  • Wang, C., Kong, H. W., Guan, Y. F., Yang, J., Gu, J. R., Yang, S. L., et al. (2005). Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Analytical Chemistry, 77, 4108–4116. doi:10.1021/ac0481001.

    Article  PubMed  CAS  Google Scholar 

  • Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442. doi:10.1021/ac060209g.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead, T. L., & Kieber-Emmons, T. (2005). Applying in vitro NMR spectroscopy and 1H NMR metabonomics to breast cancer characterization and detection. Progress in Nuclear Magnetic Resonance Spectroscopy, 47, 165–174. doi:10.1016/j.pnmrs.2005.09.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH Roadmap Initiative on Metabolomics Technology, Grant NIH/NIDDK 3 R21 DK070290-01 and a Collaborative Biomedical Research Grant from Purdue University/Discovery Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Raftery.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2008_121_MOESM1_ESM.doc

Figure S1: Histograms showing standard deviation values of the chemical shifts for six metabolites alanine (1.46 ppm), citrate (2.52 ppm), glycine (3.54 ppm), creatinine (3.05 ppm), hippurate (7.84 ppm) and formate (8.40 ppm) for samples with different urine to buffer volumes (3:1, 1:1, and 1:2). (DOCX 16 kb)

11306_2008_121_MOESM2_ESM.doc

Figure S2: PCA loadings plot for PC1 and PC2 of 1H NMR spectra of urine samples from donors with different buffer concentrations without EDTA (a and b), and with 2.5 μmol EDTA added (c and d). See Fig. 5 for the PCA scores plots. (DOCX 448 kb)

11306_2008_121_MOESM3_ESM.doc

Figure S3: PCA scores plot of 1H NMR spectra of urine samples with different urine to buffer volumes ratios 3:1, 1:1, and 1:2 (a) without EDTA and (b) with 2.5 μmol EDTA added. Urea and residual water peaks were removed prior to PCA. (DOCX 21 kb)

(PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asiago, V.M., Nagana Gowda, G.A., Zhang, S. et al. Use of EDTA to minimize ionic strength dependent frequency shifts in the 1H NMR spectra of urine. Metabolomics 4, 328–336 (2008). https://doi.org/10.1007/s11306-008-0121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0121-7

Keywords

Navigation