Skip to main content
Log in

Bridging the myoplasmic gap: recent developments in skeletal muscle excitation–contraction coupling

  • Review Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Conformational coupling between the L-type voltage-gated Ca2+ channel (or 1,4–dihydropyridine receptor; DHPR) and the ryanodine-sensitive Ca2+ release channel of the sarcoplasmic reticulum (RyR1) is the mechanistic basis for excitation–contraction (EC) coupling in skeletal muscle. In this article, recent findings regarding the roles of the individual cytoplasmic domains (the amino- and carboxyl-termini, cytoplasmic loops I–II, II–III, and III–IV) of the DHPR α1S subunit in bi-directional communication with RyR1 will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahern CA, Arikkath J, Vallejo P, Gurnett CA, Powers PA, Campbell KP, Coronado R (2001a) Intramembrane charge movements and excitation–contraction coupling expressed by two-domain fragments of the Ca2+ channel. Proc Natl Acad Sci USA 98:6935–6940

    Article  PubMed  CAS  Google Scholar 

  • Ahern CA, Bhattacharya D, Mortensen L, Coronado R (2001b) A component of excitation–contraction coupling triggered in the absence of the T671-Q765 regions of the II–III loop of the dihydropyridine receptor α1S pore subunit. Biophys J 81:3294–3307

    PubMed  CAS  Google Scholar 

  • Anderson AA, Altafaj X, Zheng Z, Wang Z-M, Delbono O, Ronjat M, Treves S, Zorzato F (2006) The junctional SR protein JP-45 affects the functional expression of the voltage-dependent Ca2+ channel CaV1.1. J Cell Sci 199:2145–2155

    Article  CAS  Google Scholar 

  • Anderson AA, Treves S, Bira D, Betto R, Sandonà D, Ronjat M, Zorzato F (2003) The novel skeletal muscle sarcoplasmic reticulum JP-45 protein. J Biol Chem 278:39987–39992

    Article  PubMed  CAS  Google Scholar 

  • Avila G, Dirksen RT (2000) Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca2+ channel. J Gen Physiol 115:467–480

    Article  PubMed  CAS  Google Scholar 

  • Bannister RA, Beam KG (2005) The α1S N-terminus is not essential for bi-directional coupling with RyR1. Biophys Biochem Res Commun 336:134–141

    Article  CAS  Google Scholar 

  • Bannister RA, Beam KG (2006) Probing a potential role of the carboxyl-terminal portion of the DHPR α1S II–III loop in skeletal-type excitation–contraction coupling. Biophys J 90:1275a

    Google Scholar 

  • Beam KG, Adams BA, Niidome T, Numa S, Tanabe T (1992) Function of a truncated dihydropyridine receptor as both voltage sensor and calcium channel. Nature 360:169–171

    Article  PubMed  CAS  Google Scholar 

  • Beam KG, Horowicz P (2004) Excitation–contraction coupling in skeletal muscle. In: Engel AG, Franzini-Armstrong C (eds) Myology, 3rd edn. McGraw-Hill, New York, pp 257–280

    Google Scholar 

  • Beurg M, Ahern CA, Vallejo P, Conklin MW, Powers PA, Gregg RG, Coronado R (1999) Involvement of the carboxy-terminus region of the dihydropyridine receptor β1a subunit in excitation–contraction coupling of skeletal muscle. Biophys J 77:2953–2967

    PubMed  CAS  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    Article  PubMed  CAS  Google Scholar 

  • Carbonneau L, Bhattacharya D, Sheridan DC, Coronado R (2005) Multiple loops of the dihydropyridine receptor pore subunit are required for full-scale excitation–contraction coupling in skeletal muscle. Biophys J 89:243–255

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Li M, Zhang Y, He L, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J (2004) Structural basis of the α1–β subunit interaction of voltage-gated Ca2+ channels. Nature 429:675–680

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Altafaj X, Ronjat M, Coronado R (2005) Interaction between the dihydropyridine receptor Ca2+ channel β-subunit and ryanodine receptor type 1 strengthens excitation–contraction coupling. Proc Natl Acad Sci USA 102:19225–19230

    Article  PubMed  CAS  Google Scholar 

  • De Jongh KS, Merrrick DK, Catterall WA (1989) Subunits of purified calcium channels: a 212-kDa form of α1 and partial amino acid sequence of a phosphorylation site of an independent β subunit. Proc Natl Acad Sci USA 86:8585–8589

    Article  PubMed  Google Scholar 

  • El-Hayek R, Antoniu B, Wang J, Hamilton SL, Ikemoto N (1995) Identification of calcium release-triggering and blocking regions of the II–III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem 270:22116–22118

    Article  PubMed  CAS  Google Scholar 

  • El-Hayek R, Ikemoto N (1998) Identification of the minimum essential region in the II–III loop of the dihydropyridine receptor α1 subunit required for activation of skeletal muscle-type excitation–contraction coupling. Biochem 37:7015–7020

    Article  CAS  Google Scholar 

  • Felder E, Protasi F, Hirsch R, Franzini-Armstrong C, Allen PD (2002) Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle. Biophys J 82:3144–3149

    PubMed  CAS  Google Scholar 

  • Feng W, Tu J, Yang T, Vernon PS, Allen PD, Worley PF, Pessah IN (2002) Homer regulates gain of ryanodine receptor type 1 channel complex. J Biol Chem 277:44722–44730

    Article  PubMed  CAS  Google Scholar 

  • Flucher BE, Andrews SB, Fleischer S, Marks AR, Caswell A, Powell JA (1993) Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. J Cell Biol 123:1161–1174

    Article  PubMed  CAS  Google Scholar 

  • Flucher BE, Kasielke N, Grabner M (2000) The triad targeting signal of the skeletal muscle calcium channel is localized in the COOH terminus of the α1S subunit. J Cell Biol 151:467–478

    Article  PubMed  CAS  Google Scholar 

  • Flucher BE, Weiss RG, Grabner M (2002) Cooperation of two-domain Ca2+ channel fragments in triad targeting and restoration of excitation–contraction coupling in skeletal muscle. Proc Natl Acad Sci USA 99:10167–10172

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C (1970) Studies of the triad. I. Structure of the junction in frog twitch fibers. J Cell Biol 47:488–489

    Article  Google Scholar 

  • García J, Tanabe T, Beam KG (1994) Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J Gen Physiol 103:125–147

    Article  PubMed  Google Scholar 

  • García MC, Carillo E, Galindo JM, Hernández A, Copello JA, Fill M, JA Sanchez (2005) Short-term regulation of excitation–contraction coupling by the β1a subunit in adult mouse skeletal muscle. Biophys J 89:3976–3984

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch RE (2006) The C terminus of the L-type voltage-gated calcium channel CaV1.2 encodes a transcription factor. Cell 127:591–606

    Article  PubMed  CAS  Google Scholar 

  • Gouadon E, Schumeier RP, Ursu D, Anderson AA, Treves S, Zorzato F, Lehmann-Horn F, Melzer W (2006) A possible role of the junctional face protein JP-45 in modulating Ca2+ release in skeletal muscle. J Physiol 572:269–280

    PubMed  CAS  Google Scholar 

  • Grabner M, Dirksen RT, Beam KG (1998) Tagging with green fluorescent protein reveals a distinct subcellular distribution of L-type and non-L-type Ca2+ channels expressed in dysgenic myotubes. Proc Natl Acad Sci USA 95:1903–1908

    Article  PubMed  CAS  Google Scholar 

  • Grabner M, Dirksen RT, Suda N, Beam KG (1999) The II–III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J Biol Chem 274:21913–21919

    Article  PubMed  CAS  Google Scholar 

  • Gregg RG, Messing A, Strube C, Beurg M, Moss R, Behan M, Sukhareva M, Haynes S, Powell JA, Coronado R, Powers PA (1996) Absence of the β1a subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the α1 subunit and eliminates excitation–contraction coupling. Proc Natl Acad Sci USA 93:3961–13966

    Article  Google Scholar 

  • He L, Zhang Y, Chen Y, Yamada Y, Yang J (2007) Functional modularity of the β-subunit of voltage-gated Ca2+ channels. Biophys J 93:834–845

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Kim JY, Dehoff M, Mizuno Y, Kamm KE, Worley PF, Muallem S, Zeng W (2007) Ca2+ signaling in microdomain: Homer1 mediates the interaction between RyR2 and CaV1.2 to regulate EC coupling. J Biol Chem 282:14283–14290

    Article  PubMed  CAS  Google Scholar 

  • Hulme JT, Ahn M, Hauschka SD, Scheuer T, Catterall WA (2002) A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem 277:4079–4087

    Article  PubMed  CAS  Google Scholar 

  • Hulme JT, Konoki K, Lin TW-C, Gritsenko MA, Camp DG, Bigelow DJ, Catterall WA (2005) Sites of proteolytic processing and noncovalent association of the distal C-terminal domain of CaV1.1 channels in skeletal muscle. Proc Natl Acad Sci USA 102:5274–5279

    Article  PubMed  CAS  Google Scholar 

  • Kasielke N, Obermair GJ, Kugler G, Grabner M, Flucher BE (2003) Cardiac-type EC-coupling in dysgenic myotubes restored with Ca2+ channel subunit isoforms α1C and α1D does not correlate with current density. Biophys J 84:3816–3828

    Article  PubMed  CAS  Google Scholar 

  • Kugler G, Grabner M, Platzer J, Striessnig J, Flucher BE (2004a) The monoclonal antibody mAB 1A binds to the excitation–contraction coupling domain in the II–III loop of the skeletal muscle calcium channel α1S subunit. Arch Biochem Biophys 427:91–100

    Article  PubMed  CAS  Google Scholar 

  • Kugler G, Weiss RG, Flucher BE, Grabner M (2004b) Structural requirements of the dihydropyridine receptor α1S II–III loop for skeletal-type excitation–contraction coupling. J Biol Chem 279:4721–4728

    Article  PubMed  CAS  Google Scholar 

  • Leong P, MacLennan DH (1998a) A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J Biol Chem 273:7791–7794

    Article  PubMed  CAS  Google Scholar 

  • Leong P, MacLennan DH (1998b) The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to contiguous site in the skeletal muscle ryanodine receptor. J Biol Chem 273:29958–29964

    Article  PubMed  CAS  Google Scholar 

  • Leuranguer V, Papadopoulos S, Beam KG (2006) Organization of calcium channel β1a subunits in triad junctions in skeletal muscle. J Biol Chem 281:3521–3527

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Wang R, Zhang J, Chen SRW, Wagenknecht T (2005) Localization of a disease-associated mutation site in the three-dimensional structure of the cardiac muscle ryanodine receptor. J Biol Chem 280:37941–37947

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Zhang J, Li P, Chen SRW, Wagenknecht T (2002) Three-dimensional reconstruction of the recombinant type 2 ryanodine receptor and localization of its divergent region 1. J Biol Chem 277:46712–46719

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R (2005a) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R (2005b) Voltage sensor of KV1.2: structural basis of electromechanical coupling. Science 309:903–908

    Article  PubMed  CAS  Google Scholar 

  • Lorenzon NM, Haarmann CS, Norris EE, Papadopoulos S, Beam KG (2004) Metabolic biotinylation as a probe of supramolecular structure of the triad junction in skeletal muscle. J Biol Chem 279:44057–44064

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Xu L, Meissner G (1994) Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J Biol Chem 269:6511–6516

    PubMed  CAS  Google Scholar 

  • Lu X, Xu L, Meissner G (1995) Phosphorylation of dihydropyridine receptor II–III loop peptide regulates skeletal muscle calcium release channel function. Evidence for an essential role of the β-OH group of Ser687. J Biol Chem 270:18459–64

    Article  PubMed  CAS  Google Scholar 

  • Ludtke SJ, Serysheva II, Hamilton SL, Chiu W (2005) The pore structure of the closed RyR1 channel. Structure 13:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Monnier N, Procaccio V, Stieglitz P, Lunardi J (1997) Malignant-hyperthermia susceptibility is associated with a mutation of the alpha1-subunit of the human dihydropyridine-sensitive L-type voltage-gated calcium channel-receptor in skeletal muscle. Am J Hum Genet 60:1316–1325

    PubMed  CAS  Google Scholar 

  • Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380:72–75

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Sekiguchi N, Rando TA, Allen PD, Beam KG (1998a) Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. J Biol Chem 273:13403–13406

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Tanabe T, Konno T, Adams B, Beam KG (1998b) Localization in the II–III loop of the dihydropyridine receptor of a sequence critical for excitation–contraction coupling. J Biol Chem 273:24983–24986

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber B, Gerster U, Doring F, Glossmann H, Tanabe T, Flucher BE (1998) Association of calcium channel α1S and β1a subunits is required for the targeting of β1a but not of α1S into skeletal muscle triads. Proc Natl Acad Sci USA 95:5015–5020

    Article  PubMed  CAS  Google Scholar 

  • Ono F, Higashijima S, Scherbatko A, Fetcho JR, Brehm P (2001) Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J Neurosci 21:5439–5448

    PubMed  CAS  Google Scholar 

  • Opatowsky Y, Chen C-C, Campbell KP, Hirsch JA (2004) Structural analysis of the voltage-dependent calcium channel β subunit functional core and its complex with the α1 interaction domain. Neuron 42:387–399

    Article  PubMed  CAS  Google Scholar 

  • Opatowsky Y, Chomsky-Hecht O, Kang MG, Campbell KP, Hirsch JA (2003) The voltage-dependent calcium channel β subunit contains two stable interacting domains. J Biol Chem 278:52323–32

    Article  PubMed  CAS  Google Scholar 

  • Paolini C, Fessenden JD, Pessah IN, Franzini-Armstrong C (2004a) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci USA 101:12748–12752

    Article  PubMed  CAS  Google Scholar 

  • Paolini C, Protasi F, Franzini-Armstrong C (2004b) The relative position of RyR feet and DHPR tetrads in skeletal muscle. J Mol Biol 342:145–153

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos S, Leuranguer V, Bannister RA, Beam KG (2004) Mapping sites of potential proximity between the DHPR and RyR1 in muscle using a CFP-YFP tandem as a FRET probe. J Biol Chem 279:44046–44056

    Article  PubMed  CAS  Google Scholar 

  • Pate P, Mochca-Morales J, Wu Y, Zhang J-Z, Rodney GG, Serysheva II, Williams BY, Anderson MA, Hamilton SL (2000) Determinants for calmodulin binding on voltage-dependent Ca2+ channels. J Biol Chem 275:39786–39792

    Article  PubMed  CAS  Google Scholar 

  • Perez C, Mukharjee S, Allen PD (2003a) Amino acids 1–1,680 of ryanodine receptor type 1 hold critical determinants of the skeletal type for excitation–contraction coupling. Role of divergence domain D2. J Biol Chem 278:39644–39652

    Article  PubMed  CAS  Google Scholar 

  • Perez C, Voss A, Pessah IN, Allen PD (2003b) RyR1/RyR3 chimeras reveal that multiple domains of RyR1 are involved in skeletal-type E–C coupling. Biophys J 84:2655–2663

    PubMed  CAS  Google Scholar 

  • Proenza C, Wilkens CM, Beam KG (2000a) Excitation–contraction coupling is not affected by scrambled sequence in residues 681–690 of the dihydropyridine receptor II–III loop. J Biol Chem 275:29935–29937

    Article  PubMed  CAS  Google Scholar 

  • Proenza C, Wilkens CM, Lorenzon NM, Beam KG (2000b) A carboxyl-terminal region important for the expression and targeting of the skeletal muscle dihydropyridine receptor. J Biol Chem 275:23169–23174

    Article  PubMed  CAS  Google Scholar 

  • Proenza C, O’Brien JJ, Nakai J, Mukharjee S, Allen PD, Beam KG (2002) Identification of a region of RyR1 that participates in allosteric coupling with the α1S (CaV1.1) II–III loop. J Biol Chem 277:6530–6535

    Article  PubMed  CAS  Google Scholar 

  • Protasi F, Franzini-Armstrong C, Allen PD (1998) Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. J Cell Biol 140:831–8342

    Article  PubMed  CAS  Google Scholar 

  • Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD (2002) Multiple regions of RyR1 mediate functional and structural interactions with α1S-dihydropyridine receptors in skeletal muscle. Biophys J 83:3230–3244

    Article  PubMed  CAS  Google Scholar 

  • Protasi F, Takekura H, Wang Y, Chen SRW, Meissner G, Allen PD, Franzini-Armstrong C (2000) RyR1 and RyR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J 79:2494–2508

    PubMed  CAS  Google Scholar 

  • Samsó M, Shen X, Allen PD (2006) Structural characterization of the RyR1-FKBP12 interaction. J Mol Biol 356:917–927

    Article  PubMed  CAS  Google Scholar 

  • Samsó M, Wagenknecht T, Allen PD (2005) Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat Struct Mol Biol 12:539–544

    Article  PubMed  CAS  Google Scholar 

  • Schredelseker J, Dayal A, Obermair G, Franzini-Armstrong C, Grabner M (2007) Correct assembly of CaV1.1 into tetrads seems to be a specific property of the skeletal muscle β1a subunit. Biophys J 92:312a

    Google Scholar 

  • Schredelseker J, Di Biase V, Obermaier GJ, Felder ET, Flucher BE, Franzini-Armstrong C, Grabner M (2005) The β1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle tetrad formation. Proc Natl Acad Sci USA 102:17219–17224

    Article  PubMed  CAS  Google Scholar 

  • Sencer S, Papineni RV, Halling DB, Pate P, Krol J, Zhang JZ, Hamilton SL (2001) Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. J Biol Chem 276:38237–38241

    PubMed  CAS  Google Scholar 

  • Serysheva II, Hamilton SL, Chiu W, Ludtke SJ (2005) Structure of Ca2+ release channel at 14 A° resolution. J Mol Biol 345:427–431

    Article  PubMed  CAS  Google Scholar 

  • Serysheva II, Ludtke SJ, Baker MR, Chiu W, Hamilton SL (2002) Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy. Proc Natl Acad Sci USA 99:10370–10375

    Article  PubMed  CAS  Google Scholar 

  • Sheridan DC, Carbonneau L, Ahern CA, Nataraj P, Coronado R (2003a) Ca2+-dependent excitation–contraction coupling triggered by the heterologous cardiac/brain β2a-subunit in skeletal muscle. Biophys J 85:3739–3757

    PubMed  CAS  Google Scholar 

  • Sheridan DC, Cheng W, Ahern CA, Mortensen L, Alsammarae D, Vallejo P, Coronado R (2003b) Truncation of the carboxyl terminus of the dihydropyridine receptor β1a subunit promotes Ca2+ dependent excitation–contraction coupling in skeletal myotubes. Biophys J 84:220–237

    PubMed  CAS  Google Scholar 

  • Sheridan DC, Cheng W, Carbonneau L, Ahern CA, Coronado R (2004) Involvement of a heptad repeat in the carboxyl terminus of the dihydropyridine receptor β1a subunit in the mechanism of excitation–contraction coupling in skeletal muscle. Biophys J 87:929–942

    Article  PubMed  CAS  Google Scholar 

  • Sheridan DC, Takekura H, Franzini-Armstrong C, Beam KG, Allen PD, Perez CF (2006) Bi-directional signaling between calcium channels of skeletal muscle requires, multiple, direct and indirect interactions. Proc Natl Acad Sci USA 103:19760–19765

    Article  PubMed  CAS  Google Scholar 

  • Slavik KJ, Wang J-P, Aghdasi B, Zhang J-Z, Mandel F, Malouf N, Hamilton SL (1997) A carboxy-terminal peptide of the α1-subunit of the dihydropyridine receptor inhibits Ca2+-release channels. Am J Physiol 41:C1475-C1481

    Google Scholar 

  • Strube C, Beurg M, Sukhareva C, Ahern CA, Powell JA, Powers PA, Gregg RG, Coronado R (1996) Reduced Ca2+ current, charge movement and absence of Ca2+ transients in skeletal muscle deficient in dihydorpyridine receptor β1 subunit. Biophys J 75:2531–2543

    Google Scholar 

  • Takahashi SX, Dalton S, Miriyala J, Colecraft HM (2005) A CaVβ SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. J Gen Physiol 126:365–377

    Article  PubMed  CAS  Google Scholar 

  • Takahashi SX, Miriyala J, Colecraft HM (2004) Membrane-associated guanylate kinase-like properties required for modulation of voltage-dependent Ca2+ channels. Proc Natl Acad Sci USA 101:193–198

    Google Scholar 

  • Takekura H, Bennett L, Tanabe T, Beam KG, Franzini-Armstrong C (1994) Restoration of junctional tetrads in dysgenic myotubes by dihydropyridine receptor cDNA. Biophys J 67:793–803

    PubMed  CAS  Google Scholar 

  • Takekura H, Franzini-Armstrong C (1999) Correct targeting of dihydropyridine receptors and triadin in dyspedic mouse skeletal muscle in vivo. Dev Dyn 214:372–380

    Article  PubMed  CAS  Google Scholar 

  • Takekura H, Paolini C, Franzini-Armstrong C, Kugler G, Grabner M, Flucher BE (2004) Differential contribution of skeletal and cardiac II–III loop sequences to the assembly of DHP-receptor arrays in skeletal muscle. Mol Biol Cell 15:5408–5419

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990a) Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling. Nature 346:567–569

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation–contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Mikami A, Numa S, Beam KG (1990b) Cardiac-type excitation–contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344:451–453

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Sencer S, Hamilton SL (2002) Calmodulin modulation of proteins involved in excitation–contraction coupling. Front Biosci 7:d1583–d1589

    Article  PubMed  Google Scholar 

  • Van Petegem F, Clark KA, Chatelain FC, Minor DL (2004) Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429:670–675

    Article  CAS  Google Scholar 

  • Ward CW, Feng W, Tu J, Pessah IN, Worley PK, Schneider MF (2004) Homer protein increases activation of Ca2+ sparks in permeablized skeletal muscle. J Biol Chem 279:5781–5787

    Article  PubMed  CAS  Google Scholar 

  • Weiss RG, O’Connell KMS, Flucher BE, Allen PD, Grabner M, Dirksen RT (2004) Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III–IV loop on skeletal muscle EC coupling. Am J Physiol 287:C1094-C1102

    Article  CAS  Google Scholar 

  • Wilkens CM, Beam KG (2003) Insertion of α1S II–III loop and C terminal sequences into α1H fails to restore excitation–contraction coupling in dysgenic myotubes. J Musc Res Cell Mot 24:99–109

    Article  CAS  Google Scholar 

  • Wilkens CM, Kasielke N, Flucher BE, Beam KG, Grabner M (2001) Excitation–contraction coupling is unaffected by drastic alteration of the sequence surrounding residues L720–L764 of the α1S II–III loop. Proc Natl Acad Sci USA 98:5892–5897

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Eberhart A, Glossmann H, Striessnig J, Grigorieff N (2003) Visualization of the domain structure of an L-type Ca2+ channel using cryo-electromiscroscopy. J Mol Biol 332:171–182

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Saint-Armant L, Hirata H, Cui WW, Sprague SM, Kuwada JY (2005) Non-sense mutations in the dihydropyridine receptor(β1 gene, CACNB1, paralyze zebrafish relaxed mutants. Cell Calcium 39:227–236

    Article  PubMed  CAS  Google Scholar 

  • Zorzato F, Anderson AA, Ohlendieck K, Froemming G, Guerrini R, Treves S (2000) Identification of a novel 45 kDa protein (JP-45) from rabbit sarcoplasmic-reticulum junctional-face membrane. Biochem J 351:537–543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr. K. G. Beam for his guidance. I would also like to thank Drs. B. A. Adams, S. Papadopoulos and D. C. Sheridan for their helpful comments. This work was supported by Muscular Dystrophy Association Development Grant MDA4155 to R. A. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Bannister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannister, R.A. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation–contraction coupling. J Muscle Res Cell Motil 28, 275–283 (2007). https://doi.org/10.1007/s10974-007-9118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-007-9118-5

Keywords

Navigation