Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA

Abstract

THERE are dihydropyridine (DHP)-sensitive calcium currents in both skeletal and cardiac muscle cells, although the properties of these currents are very different in the two cell types1 (for simplicity, we refer to currents in both tissues as L-type12). The mechan-isms of depolarization-contraction coupling also differ. As the predominant voltage-dependent calcium current of cardiac cells1, the L-type current represents a major pathway for entry of extra-cellular calcium. This entry triggers the subsequent large release of calcium from the sarcoplasmic reticulum (SR) 3–5. In contrast, depolarization of skeletal muscle releases calcium from the SR6,7 without the requirement for entry of extracellular calcium through L-type calcium channels8,9. To investigate the molecular basis for these differences in calcium currents and in excitation-contraction (?–C) coupling, we expressed complementary DNAs for the DHP receptors from skeletal10 and cardiac muscle11 in dysgenic skeletal muscle. We compared the properties of the L-type channels pro-duced and showed that expression of a cardiac calcium channel in skeletal muscle cells results in ?–C coupling resembling that of cardiac muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bean, B. P. A. Rev. Physiol. 51, 367–384 (1989).

    Article  CAS  Google Scholar 

  2. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Nature 316, 440–443 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Fabiato, A. J. gen. Physiol. 85, 291–320 (1985).

    Article  CAS  Google Scholar 

  4. Beuckelmann, D. J. & Wier, W. G. J. Physiol., Lond. 405, 233–255 (1988).

    Article  Google Scholar 

  5. Näbauer, M., Callewaert, G., Cleemann, L. & Morad, M. Science 244, 800–803 (1989).

    Article  ADS  Google Scholar 

  6. Costantin, L. L. Prog. Biophys. molec. Biol. 29, 197–224 (1975).

    Article  CAS  Google Scholar 

  7. Endo, M. Physiol. Rev. 57, 71–108 (1977).

    Article  CAS  Google Scholar 

  8. Armstrong, C. M., Bezanilla, F. M. & Horowicz, P. Biochim. biophys. Acta 267, 605–608 (1972).

    Article  CAS  Google Scholar 

  9. Knudson, C. M., Jay, S. D. & Beam, K. G. Biophys. J. 49, 13a (1986).

    Article  Google Scholar 

  10. Tanabe, T. et al. Nature 328, 313–318 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Mikami, A. et al. Nature 340, 230–233 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Klaus, M. M., Scordilis, S. P., Rapalus, J. M., Briggs, R. T. & Powell, J. A. Devl Biol. 99, 152–165 (1983).

    Article  CAS  Google Scholar 

  13. Beam, K. G., Knudson, C. M. & Powell, J. A. Nature 320, 168–170 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Sanchez, J. A. & Stefani, E. J. Physiol., Lond. 283, 197–209 (1978).

    Article  CAS  Google Scholar 

  16. Donaldson, P. L. & Beam, K. G. J. gen. Physiol. 82, 449–468 (1983).

    Article  CAS  Google Scholar 

  17. Isenberg, G. & Klöckner, U. Pflügers Arch. ges. Physiol. 395, 30–41 (1982).

    Article  CAS  Google Scholar 

  18. Lee, K. S. & Tsien, R. W. Nature 297, 498–501 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Kass, R. S. & Sanguinetti, M. C. J. gen. Physiol. 84, 705–726 (1984).

    Article  CAS  Google Scholar 

  20. Beam, K. G. & Knudson, C. M. J. gen. Physiol. 91, 781–798 (1988).

    Article  CAS  Google Scholar 

  21. Perez-Reyes, E. et al. Nature 340, 233–236 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Adams, B. A. & Beam, K. G. J. gen. Physiol. 94, 429–444 (1989).

    Article  CAS  Google Scholar 

  23. Schneider, M. F. & Chandler, W. K. Nature 242, 244–246 (1973).

    Article  ADS  CAS  Google Scholar 

  24. Rios, E. & Brum, G. Nature 325, 717–720 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, T., Mikami, A., Numa, S. et al. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344, 451–453 (1990). https://doi.org/10.1038/344451a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344451a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing