Skip to main content
Log in

Theoretical Study of Boron Clustering in Silicon

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Ion implantation is the method of choice to introduce dopants such as boron into silicon. Thermal anneals are used to heal the implant damage as well as to activate the dopant electrically. The implant-anneal cycle causes transient enhanced diffusion (TED) of boron and clustering of boron atoms at concentrations far below the solubility limit. The formation of these small immobile boron-interstitial clusters (BICs) causes the deactivation of boron. In this work, we use density-functional theory calculations to study the boron clustering process in Si. We determine the minimum-energy structures of these clusters at different sizes embedded in bulk Si and calculate the energy and charge state of each cluster within density-functional theory. Special care is taken with regard to structural minimization, charge state effects and energy corrections. In contrast to previous work, we argue that substitutional-boron clusters as defined previously are meaningless due to the high repulsive energy of nearest-neighbor boron atoms. We compare the larger clusters to the phase of precipitates at higher boron concentrations, Si1.8B5.2, and suggest the boron icosahedron as logical final BIC before the formation of more macroscopic precipitates in the absence of kinetic constraints. We also describe in detail the implementation of our ab-initio results into a continuum model, which we have used in previous work to simulate diffusion and deactivation of boron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Chason, S.T. Picraux, J.M. Poate, J.O. Borland, M.I. Current, T. Diaz de la Rubia, D.J. Eaglesham,O.W. Holland, M.E. Law, C.W. Magee, J.W. Mayer, J. Melngailis, and A.F. Tasch, J. Appl. Phys., 81, 6513 (1997).

    Article  Google Scholar 

  2. P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D.C. Jacobson, and J.M. Poate, Appl. Phys. Lett., 66, 568 (1995);L.H. Zhang, K.S. Jones, P.H. Chi, and D.S. Simons, ibid. 67, 2025 (1995).

    Google Scholar 

  3. E. Tarnow, J. Phys. Condens. Matter, 4, 5405 (1992).

    Google Scholar 

  4. J. Zhu, T. Diaz de la Rubia, L.H. Yang, C. Mailhiot, and G.H. Gilmer, Phys. Rev., B 54, 4741 (1996).

    Google Scholar 

  5. W. Windl, M.M. Bunea, R. Stumpf, S.T. Dunham, and M.P. Masquelier, in Proc. of the 2nd International Conference on Modeling and Simulation of Microsystems, April 19–21, 1999, San Juan, Puerto Rico (Computational Publications, Cambridge, MA 1999), p. 369; MRS Symposia Proceedings, 568, (Materials Research Society, Pittsburgh, 1999), p. 91;Phys. Rev. Lett., 83, 4345 (1999).

  6. B. Sadigh, T.J. Lenosky, S.K. Theiss, M.J. Caturla, T. Diaz de la Rubia, and M.A. Foad, Phys. Rev. Lett., 83, 4341 (1999).

    Google Scholar 

  7. M.J. Caturla, M.D. Johnson, and T. Diazde la Rubia, Appl. Phys. Lett., 72, 2736 (1998).

    Article  Google Scholar 

  8. A.D. Lilak, S.K. Earles, K.S. Jones, M.E. Law, and M.D. Giles, Tech. Dig. Int. Electron Devices Meet. (IEEE, Piscataway, New Jersey, 1997), p. 493. in Proceedings of the 1998 International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, Piscataway, NJ, 1998), p. 493.

  9. D. Stiebel, P. Pichler, and H. Ryssel, MRS Symposia Proceedings, 538, (Materials Research Society, Pittsburgh, 1999), p. 141.

  10. L. Pelaz, G.H. Gilmer, H.-J. Gossmann, and C.S. Rafferty, Appl. Phys. Lett., 74, 3657 (1999).

    Google Scholar 

  11. S.K. Theiss, M.J. Caturla, M.D. Johnson,J. Zhu, T. Lenosky, B. Sadigh, and T. Diaz de la Rubia, Thin Solid Films, 365, 219 (2000).

    Google Scholar 

  12. W. Luo, P.B. Rasband, P. Clancy, and B.W.Roberts, J. Appl. Phys., 84, 2476 (1998).

    Article  Google Scholar 

  13. J. Zhu (unpublished); partially reported in Ref. protectciteCaturla98.

  14. T.J. Lenosky, B. Sadigh, S.K. Theiss, M.J. Caturla, and T. Diaz de la Rubia, Appl. Phys. Lett., 77, 1834 (2000).

    Article  Google Scholar 

  15. X.-Y. Liu, W. Windl, and M.P. Masquelier, Appl. Phys. Lett., 77, 2018 (2000); W. Windl, X.-Y. Liu, M.P. Masquelier, Phys. Stat. Sol., (b) 226, 37 (2001).

    Google Scholar 

  16. P. Alippi, P. Ruggerone, and L. Colombo, Sol. State Phen., 82-84, 163 (2002).

    Google Scholar 

  17. M. Strobel, A. La Magna, and S. Coffa, Nucl. Instrum. Meth., B 186, 339 (2002).

    Article  Google Scholar 

  18. B.P. Uberuaga, G. Henkelman, H. J'onsson, S.T. Dunham, W. Windl, and R. Stumpf, Phys. Stat. Sol., 233, 244 (2002).

    Google Scholar 

  19. G. Kresse and J. Hafner, Phys. Rev., B 47, 558 (1993);49, 14 251 (1994); G. Kresse and J. Furthmüller, Comput.Mater. Sci., 6, 15 (1996); Phys. Rev., B 55, 11 169(1996).

  20. G. Kresse and J. Hafner, J. Phys.: Condens. Matt., 6, 8245 (1994).

    Article  Google Scholar 

  21. The Fermi-level dependence of the different charge-state plots thus have an energy difference of 0.1 e V in some cases compared to the calculationswith 43 k-point sampling.A 43 k-point sampling was used for the calculations in the I, Bs, B2s, and B2I charge-state plots.

  22. M. Methfessel and A.T. Paxton, Phys. Rev., B 40, 3616 (1989).

    Google Scholar 

  23. The valence band reference energy is 4.82 e V in GGA and 5.17 e V in LDA, respectively, within the computational settings of this paper.

  24. J. Padilla and D. Vanderbilt, Surf. Sci., 418, 64 (1998).

    Google Scholar 

  25. M. Asta, D. de Fontaine, M. Van Schilfgaarde, M. Slutter, and M. Methfessel, Phys. Rev., B 46, 5055, (1992).

    Article  Google Scholar 

  26. G. Kresse and J. Furthmüller, VASP the Guide (Vienna University of Technology, Vienna, 1999), Chap. 8.6 [http://tph.tuwien.ac.at/vasp/guide/vasp.html].

  27. W. A. Harrison, in Defects and Diffusion in Silicon Processing,edited by T. Diaz de la Rubia et al., MRS Symposia Proceedings 469 (Materials Research Society, Pittsburgh,1997), p. 211.

  28. B.P. Uberuaga, W. Windl, R. Stumpf, and H. J'onsson (unpublished).

  29. W. Windl, Phys. Stat. Sol. (in print).

  30. A. Ural, P.B. Griffin, and J.D. Plummer, Phys. Rev. Lett.,83, 3454 (1999); H. Bracht, N.A. Stolwijk, and H. Mehrer, Phys. Rev.,B 52, 16 542 (1995); H. Bracht and E.E. Haller, Phys. Rev.Lett., 85, 4835 (2000).

  31. R.D. Harris, J.L. Newton, and G.D. Watkins, Phys. Rev. Lett., 48, 1271 (1982).

    Google Scholar 

  32. W. Windl and A.A. Demkov, in Defect and impurityengineered Semiconductors and Devices II, edited by S. Ashok et al., MRS Symposia Proceedings, 510, (Materials Research Society, Pittsburgh, PA, 1998), p. 181.

  33. M.A. Meléndez-Lira, J.D. Lorentzen, J. Menéndez,W. Windl, N.G. Cave, R. Liu, J.W. Christiansen, N.D. Theodore, and J.J. Candelaria, Phys. Rev., B 56, 3648 (1997).

    Google Scholar 

  34. K.B. Beardmore, W. Windl, B.P. Haley and N.Gronbech-Jensen, in Proc. 2002 International Conference on Computational Nanoscience (Computational Publications, Cambridge, MA 2002), p. 466.

    Google Scholar 

  35. W. Windl, A.A. Demkov, and O.F. Sankey, Theory of Strain and Electronic Structure of Si1-yCy and i1-x-yGexCy Alloys,in Silicon-Germanium Carbon Alloys: Growth,Properties and Applications (Optoelectronic Properties of Semiconductors and Superlattices), edited by S.T. Pantelides and S. Zollner(Taylor and Francis, New York, 2002), chapter 8.

  36. W. Windl and O.F. Sankey, First-Principles Investigation of the Ordered Si4C Compound, in III-V and IV-IV Materials and Processing Challenges for Highly Integrated Microelectonics and Optoelectronics, edited by S.A. Ringel, E.A. Fitzgerald, I. Adesida, and D. Houghton MRS Symposia Proceedings, 535, Pittsburgh, PA 1999), p. 299.

  37. T.E. Haynes, D.J. Eaglesham, P.A. Stolk, H.-J. Gossmann, D.C. Jacobson, and J.M. Poate, Appl. Phys. Lett., 69, 1376 (1996).

    Article  Google Scholar 

  38. G. Mannino, N.E. Cowern, F. Roozeboom, and J.G.M. van Berkum, Appl. Phys. Lett., 76, 855 (2000).

    Article  Google Scholar 

  39. A. Vailionis, G. Glass, P. Desjardins, D.C. Cahill, and J.E. Greene, Phys. Rev. Lett., 82, 4464 (1999).

    Article  Google Scholar 

  40. J. Kim, F. Kirchhoff, J.W. Wilkins, and F.S. Khan, Phys. Rev. Lett., 84, 503 (2000).

    Google Scholar 

  41. L. Pelaz, M. Jaraiz, G.H. Gilmer, H.-J. Gossmann, C.S. Rafferty, D.J. Eaglesham, and J.M. Poate, Appl. Phys. Lett., 70, 2285(1997).

    Article  Google Scholar 

  42. J. Yamauchi, N. Aoki, and I. Mizushima, Phys. Rev., B 55, 10 245 (1997); I. Mizushima, A. Murakoshi,K. Suguro, N. Aoki, and J. Yamauchi, Mater. Chem. Phys., 54, 54 (1998).

  43. B. Magnusson and C. Brosset, Acta Chemica Scandinavica, 16, 449 (1962).

    Google Scholar 

  44. I. Mizushima, M. Watanabe, A. Murakoshi, M. Hotta, M. Kashiwagi and M. Yoshiki, Appl. Phys. Lett., 63, 373 (1993); I. Mizushima, A. Murakoshi, M. Watanabe, M. Yoshiki,M. Hotta, M. Kashiwagi, Jpn., J. Appl. Phys., 1 33, 404 (1994).

    Google Scholar 

  45. G.S. Hwang and W.A. Goddard, Phys. Rev. Lett., 89, 055901 (2002).

    Article  Google Scholar 

  46. No charge state for moving species was assigned in the original paper of Ref. protectcitePelaz99.

  47. D. Yergeau, E.C. Kan, M.J. Gander, and R.W. Dutton, ALAMODE:A Layered Architecture for Model Development, in Proceedings of the 6th International Conference on Simulation of Semiconductor Devices and Processes (SISDEP'95), Erlangen, 6-8 Sept. 1995, edited by H. Ryssel and P. Pichler (Springer, Wien, 1995), p. 151.

  48. W.C. Lee, S.G. Lee, and K.J. Chang, J. Phys. Cond. Matter, 10, 995 (1998).

    Google Scholar 

  49. M. Tang, L. Colombo, J. Zhu, and T. Diaz de la Rubia, Phys. Rev., B 55, 14 279 (1997).

    Google Scholar 

  50. C.S. Rafferty, G.H. Gilmer, M. Jaraiz, D. Eaglesham, and H.-J. Gossmann, Appl. Phys.Lett., 68, 2395 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XY., Windl, W. Theoretical Study of Boron Clustering in Silicon. J Comput Electron 4, 203–219 (2005). https://doi.org/10.1007/s10825-005-5037-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-005-5037-0

Keywords

Navigation