Skip to main content
Log in

Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Increasing seed oil content is one of the most important breeding targets for rapeseed (Brassica napus). In this study, we combined quantitative trait loci (QTL) mapping and marker-trait association analysis to dissect the genetic basis of seed oil content in rapeseed. A doubled haploid (DH) population with 261 lines was grown in two highly contrasting macro-environments, Germany with winter ecotype environment and China with semi-winter ecotype environment, to explore the effect of environment effect of on seed oil content. Notable macro-environment effect was found for seed oil content. 19 QTL for seed oil content were identified across the two macro-environments. For association analysis, a total of 142 rapeseed breeding lines with diverse oil contents were grow in China macro-environment. We identified 23 simple sequence repeat (SSR) markers that were significantly associated with the seed oil content. Comparative analysis revealed that five QTL identified in the DH population, located on chromosomes A03, A09, A10 and C09, were co-localized with 11 significantly associated SSR markers that were identified from the association mapping population. Of which, the QTL on chromosome A10 was found to be homeologous with the QTL on chromosome C09 by aligning QTL confidence intervals with the reference genomes B. napus. Those QTL associated with specific macro-environments provides valuable insight into the genetic regulation of seed oil content and will facilitate marker-assisted breeding of B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Axelsson T, Shavorskaya O, Lagercrantz U (2001) Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome 44:856–864

    Article  CAS  Google Scholar 

  • Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C genome. Plant Physiol 144:1827–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91(1):62–67

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Burns M, Barnes S, Bowman J, Clarke M, Werner C, Kearsey M (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90:39–48

    Article  CAS  PubMed  Google Scholar 

  • Bus A, Körber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123(8):1413–1423

    Article  PubMed  Google Scholar 

  • Cai G, Yang Q, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genet 13:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 346:950–953

    Article  Google Scholar 

  • Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vin-court P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, Andre I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribière N, Trotoux G, Blanchard P, Rivière N, Martinant JP, Pauquet J (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:120

    Article  CAS  Google Scholar 

  • Dier BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphism. Theor Appl Genet 88:662–668

    Article  Google Scholar 

  • Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • Fu Y, Lu K, Qian L, Mei J, Wei D, Peng X, Xu X, Li J, Frauen M, Dreyer F, Snowdon RJ, Qian W (2015a) Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet 128:1429–1437

    Google Scholar 

  • Fu Y, Wei D, Dong H, He Y, Cui Y, Mei J, Wan H, Li J, Snowdon R, Friedt W, Li X, Qian W (2015b) Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep 5:14407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallauer AR, Miranda FJB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames, p 468

    Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53(4):793–802

    Article  CAS  Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968

    Article  CAS  PubMed  Google Scholar 

  • Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9:e1003246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Li B, Qu C, Yan X, Fu F, Liu L, Chen L, Li J (2011) Analysis of difference QTLs for oil content between two environments in Brassica napus L. Acta Agron Sin 37:249–254

    CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y (2016) A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet 129(6):1203–1215

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. PNAS 107:19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Kimura Y, Fujimoto H, Sakai T, Imamura J, Fu T (2000) Genetic diversity of Chinese and Japanese rapeseed (Brassica napus L.) varieties detected by RAPD markers. Breed Sci 50:257–265

    Article  CAS  Google Scholar 

  • Mekhedov S, de Ilárduya OM, Ohlrogge J (2000) Toward a functional catalog of the plant genome: a survey of genes for lipid biosynthesis. Plant Physiol 122:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Sharpe A, Bowman C, Tian Z, Qian X, Lydiate D (1997) Genetic diversity of Brassica napus accessions mainly from China detected with RFLP markers. Chin J Genet 23:221–232

    Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian L, Qian W, Snowdon RJ (2014) Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genom 15(1):1

    Article  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • SAS and Institute (2000) SAS/STAT user’s guide, version 8. SAS Institute, Cary

    Google Scholar 

  • Si P, Mailer RJ, Galwey N, Turner DW (2003) Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust J Agric Res 54:397–407

    Article  Google Scholar 

  • Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H (2012) Design of New genome-and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS ONE 7:e47037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Jiang L, Liu Q, Zhang Y, Zhang R, Ingvardsen CR, Frei UK, Wang B, Lai J, Lübberstedt T, Xu M (2013) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Teh L, Möllers C (2016) Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar × Oase cross. Theor Appl Genet 129:181–199

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • USDA ERS (2010) Oil crops yearbook. http://www.ers.usda.gov/data-products/oil-crops-yearbook.aspx

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wang SC, Bastern J, Zeng ZB (2006) Windows QTL cartographer version 2.5. North Carolina State University, Raleigh

    Google Scholar 

  • Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS ONE 8:e80569

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei DY, Mei JQ, Fu Y, Joseph OD, Li JN, Qian W (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34:1797–1804

    Article  CAS  Google Scholar 

  • Yan XY, Li JN, Fu FY, Jin JM, Chen L, Liu LZ (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170(3):355–364

    Article  CAS  Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Ecke W, Zhang Y (2005) Oil content in a European × Chinese rapeseed population. Crop Sci 45:51–59

    Article  CAS  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006a) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  CAS  PubMed  Google Scholar 

  • Zhao JW, Udall JA, Quijada PA, Grau CR, Meng JL, Osborn TC (2006b) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous nonreciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Park EJ, Chung JW, Park YJ, Chung IM, Ahn JK, Kim GH (2009) Association analysis of the amino acid contents in rice. J Integr Plant Biol 51(12):1126–1137

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Jiang C, Cao Z, Li R, Long Y, Chen S, Meng J (2010) Association mapping of seed oil content in Brassica napus and compari-son with quantitative trait loci identified from linkage mapping. Genome 53:908–916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported financially by Project of Young Researcher Cultivation of Zhejiang Academy of Agricultural Sciences; Project of Hybrid Breeding of High Oil Content in Rapeseed (2011R50026-2); The Key Project of Novel Variety Breeding of Zhejiang Province (2012C12902-1).

Authors’ contributions

HY, WQ and YF designed research; YF, DZ and HD performed research, YF, YZ, BL, and SH analyzed data; YF, MG, JL and FM wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Qian or Huasheng Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 216 kb)

Supplementary material 2 (XLS 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Zhang, D., Gleeson, M. et al. Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Euphytica 213, 17 (2017). https://doi.org/10.1007/s10681-016-1817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-016-1817-9

Keywords

Navigation