Skip to main content
Log in

Numerical approximation of bioluminescence tomography based on a new formulation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Bioluminescence tomography (BLT) is a promising new method in biomedical imaging. The BLT problem is an ill-posed inverse source problem, usually studied through a regularization technique. A new approach is proposed for solving the BLT problem based on an adjoint equation. Numerical examples show that the new formulation allows us to obtain accurate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherry SR (2004) In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol 49: 13–48

    Article  Google Scholar 

  2. Levin CS (2005) Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging 32: 325–345

    Article  Google Scholar 

  3. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17: 545–580

    Article  Google Scholar 

  4. Ray P, Wu AM, Gambhir SS (2003) Optical bioluminescence and bositron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 63: 1160–1165

    Google Scholar 

  5. Troy T, Mcmullen DJ, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminscent reporters in animal models. Mol Imaging 3: 9–23

    Article  Google Scholar 

  6. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99: 377–382

    Article  ADS  Google Scholar 

  7. Contag C, Bachmann MH (2002) Advances in bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4: 235–260

    Article  Google Scholar 

  8. Kuckuk PM, Boskey AL (2006) Molecular imaging promotes progress in orthopedic research. Bone 39: 965–977

    Article  Google Scholar 

  9. Blasberg R (2002) Imaging gene expression and endogenous molecular processes: molecular imaging. J Cereb Blood Flow Metab 22: 1157–1164

    Article  Google Scholar 

  10. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2: 683–693

    Article  Google Scholar 

  11. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11: 450–454

    Article  Google Scholar 

  12. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9: 123–128

    Article  Google Scholar 

  13. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23: 313–320

    Article  Google Scholar 

  14. Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8: 757–760

    Article  Google Scholar 

  15. Douraghy A, Prout DL, Silverman RW, Chatziioannou AF (2006) Evaluation of scintillator afterglow for use in a combined optical and PET imaging tomograph. Nucl Instrum Methods Phys Res A 569: 557–562

    Article  ADS  Google Scholar 

  16. Loo WTY, Tong JMK, Cheung MNB, Chow LWC (2006) A new predictive and prognostic marker (ATP bioluminescence and positron emission tomography) in vivo and in vitro for delivering adjuvant treatment plan to invasive breast tumor patients. Biomed Pharmacother 60: 285–288

    Article  Google Scholar 

  17. Serganova I, Moroz E, Moroz M, Pillarsetty N, Blasberg R (2006) Non-invasive molecular imaging and reporter genes. Cent Eur J Biol 1: 88–123

    Article  Google Scholar 

  18. Baumjohann D, Lutz MB (2006) Non-invasive imaging of dendritic cell migration in vivo. Immunobiol 211: 587–597

    Article  Google Scholar 

  19. Cong AX, Wang G (2006) Multispectral bioluminescence tomography: methodolgy and simulation. Int J Biomed Imaging 2006:Article ID 57614, 7 pp

  20. Li SH, Driessen W, Sullivan S, Jiang HB (2006) Bioluminescence tomography based on phantoms with different concentrations of bioluminescent cancer cells. J Opt A: Pure Appl Opt 8: 743–746

    Article  ADS  Google Scholar 

  21. Chaudhari AJ, Darvas F, Bading JR, Moats RA, Conti PS, Smith DJ, Cherry SR, Leahy RM (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol 50: 5421–5441

    Article  Google Scholar 

  22. Doyle TC, Burns SM, Contag CH (2004) In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 6: 303–317

    Article  Google Scholar 

  23. Hielscher AH (2005) Optical tomographic imaging of small animals. Curr Opin Biotechnol 16: 79–88

    Article  Google Scholar 

  24. Wang G, Hoffman EA et al (2003) Development of the first bioluminescent CT scanner. Radiol 229(P): 566

    Google Scholar 

  25. Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 50: 4225–4241

    Article  Google Scholar 

  26. Han W, Cong WX, Wang G (2006) Mathematical theory and numerical analysis of bioluminescence tomography. Inverse Probl 22: 1659–1675

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Han W, Cong WX, Wang G (2006) Mathematical study and numerical simulation of multispectral bioluminescence tomography. Int J Biomed Imaging 2006:Article ID 54390, 10 pp

  28. Han W, Wang G (2007) Theoretial and numerical analysis on multispectral boluminescence tomography. IMA J Appl Math 72: 67–85

    Article  MATH  MathSciNet  Google Scholar 

  29. Natterer F, Wabbeling F (2001) Mathematical methods in image reconstruction. SIAM, Philadephia

    MATH  Google Scholar 

  30. Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 15: R41–R93

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Wang G, Li Y, Jiang M (2004) Uniqueness theorems in bioluminescence tomography. Med Phys 31: 2289–2299

    Article  Google Scholar 

  32. Han W, Wang G (2008) Bioluminescence tomography: biomedical background, mathematical theorey, and numerical approximation. J Comp Math 26: 259–270

    MathSciNet  Google Scholar 

  33. Cheng XL, Gong RF, Han W (2008) A new general mathematical framework for bioluminescence tomography. Comput Methods Appl Mech Eng 197: 524–535

    MathSciNet  Google Scholar 

  34. Cong WX, Durairaj K, Wang LV, Wang G (2006) A Born-type approximation method for bioluminescence tomography. Med Phys 33: 679–686

    Article  Google Scholar 

  35. Cong WX, Wang G, Kumar D et al (2005) A practical reconstruction method for bioluminescence tomography. Opt Exp 13: 6756–6771

    Article  ADS  Google Scholar 

  36. Lv YJ, Tian J, Cong WX, Wang G, Luo J, Yang W, Li H (2006) A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt Exp 14: 8211–8223

    Article  ADS  Google Scholar 

  37. Grisvard P (1985) Elliptic problems in nonsmooth domains. Pitman, Boston

    MATH  Google Scholar 

  38. Atkinson K, Han W (2005) Theoretical numerical analysis: a functional analysis framework, 2nd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  39. Lions J-L (1971) Optimal control of systems governed by partial differential equation. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongfang Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Gong, R. & Han, W. Numerical approximation of bioluminescence tomography based on a new formulation. J Eng Math 63, 121–133 (2009). https://doi.org/10.1007/s10665-008-9246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-008-9246-y

Keywords

Navigation