Skip to main content
Log in

Logic gates based on G-quadruplexes: principles and sensor applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 139 refs.) gives a fundamental introduction into the sensors and logic gates based on G-quadruplexes (G4s). G4 characterizes vibrant binding activities and topology diversity, which contribute to the multiple signal output modes (including labeled moieties based on distance changes, label-free outputs by employing fluorescent ligands, G4/hemin DNAzyme with catalyzing activity and colorimetric readout using gold nanoparticles) and versatile design strategies (including target-induced G4 formation/disruption, liberation of blocked G4, split G4 probes, polymerase-assisted amplification and G4/hemin enrichment on sensor surface) of G4s-based methods. Following two important trends in logic gates (application of intelligent detection schemes and logic circuit constructions), specific sections review logic sensors and logic circuits based on G4s with several representative examples. We close this review with conclusions and give a perspective that employment of DNA technologies (such as aptamers, DNA junctions/origami, toehold-mediated strand displacement, enzyme-assisted amplification, metal ion-dependent DNAzymes) and various nanomaterials in G4s-based methods results in quite a large potential in terms of logic detection and construction of logic circuits.

The vibrant binding activities, different structural topologies, multiple signal output modes and a variety of designing strategies contribute to the versatile roles of G-quadruplexes in the application and development of DNA logic gates and logic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  CAS  Google Scholar 

  2. Wu G, Seeman NC (2006) Multiplying with DNA. Nat Comput 5:427–441

    Article  CAS  Google Scholar 

  3. Ma DL, He HZ, Ma VPY, Chan DSH, Leung KH, Zhong HJ, Lu LH, Mergny JL, Leung CH (2012) Label-free sensing of pH and silver nanoparticles using an “OR” logic gate. Anal Chim Acta 733:78–83

    Article  CAS  Google Scholar 

  4. Li W, Yang Y, Yan H, Liu Y (2013) Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Lett 13:2980–2988

    Article  CAS  Google Scholar 

  5. Liu D, Chen W, Sun K, Deng K, Zhang W, Wang Z, Jiang X (2011) Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew Chem Int Ed 50:4103–4107

    Article  CAS  Google Scholar 

  6. Liu Y, Dong B, Wu Z, Fang W, Zhou G, Shen A, Zhou X, Hu J (2014) Toehold-mediated DNA logic gates based on host-guest DNA-GNPs. Chem Commun 50:12026–12029

    Article  CAS  Google Scholar 

  7. Xia F, Zuo X, Yang R, White RJ, Xiao Y, Kang D, Gong X, Lubin AA, Vallee-Belisle A, Yuen JD, Hsu BY, Plaxco KW (2010) Label-free, dual-analyte electrochemical biosensors: a new class of molecular-electronic logic gates. J Am Chem Soc 132:8557–8559

    Article  CAS  Google Scholar 

  8. Li X, Sun L, Ding T (2011) Multiplexed sensing of mercury(II) and silver(I) ions: a new class of DNA electrochemiluminescent-molecular logic gates. Biosens Bioelectron 26:3570–3576

    Article  CAS  Google Scholar 

  9. Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449

    Article  CAS  Google Scholar 

  10. Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T, Hagiya M (2000) Molecular computation by DNA hairpin formation. Science 288:1223–1226

    Article  CAS  Google Scholar 

  11. Ma DL, He HZ, Chan DSH, Leung CH (2013) Simple DNA-based logic gates responding to biomolecules and metal ions. Chem Sci 4:3366–3380

    Article  CAS  Google Scholar 

  12. Zhang M, Le HN, Wang P, Ye BC (2012) A versatile molecular beacon-like probe for multiplexed detection based on fluorescence polarization and its application for a resettable logic gate. Chem Commun 48:10004–10006

    Article  CAS  Google Scholar 

  13. You M, Peng L, Shao N, Zhang L, Qiu L, Cui C, Tan W (2014) DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. J Am Chem Soc 136:1256–1259

    Article  CAS  Google Scholar 

  14. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11:2801–2809

    Article  CAS  Google Scholar 

  15. Jing N, Li Y, Xiong W, Sha W, Jing L, Tweardy DJ (2004) G-quartet oligonucleotides: A new class of signal transducer and activator of transcription 3 inhibitors that suppresses growth of prostate and breast tumors through induction of apoptosis. Cancer Res 64:6603–6609

    Article  CAS  Google Scholar 

  16. Qi H, Lin C, Fu X, Wood LM, Liu A, Tsai YC, Chen Y, Barbieri CM, Pilch DS, Liu L (2006) G-quadruplexes induce apoptosis in tumor cells. Cancer Res 66:11808–11816

    Article  CAS  Google Scholar 

  17. Verdun RE, Karlseder J (2007) Replication and protection of telomeres. Nature 447:924–931

    Article  CAS  Google Scholar 

  18. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598

    Article  CAS  Google Scholar 

  19. Kumari S, Bugaut A, Balasubramanian S (2008) Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5′ UTR of the NRAS proto-oncogene. Biochemistry 47:12664–12669

    Article  CAS  Google Scholar 

  20. Drygin D, Siddiqui-Jain A, O’brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, Lim JKC, Von Hoff D, Anderes K, Rice WG (2009) Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 69:7653–7661

    Article  CAS  Google Scholar 

  21. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366

    Article  CAS  Google Scholar 

  22. Creze C, Rinaldi B, Haser R, Bouvet P, Gouet P (2007) Structure of a d(TGGGGT) quadruplex crystallized in the presence of Li+ ions. Acta Crystallogr D Biol Crystallogr 63:682–688

    Article  CAS  Google Scholar 

  23. Ida R, Wu G (2005) Solid-state 87Rb NMR signatures for rubidium cations bound to a G-quadruplex. Chem Commun 14:4294–4296

    Article  CAS  Google Scholar 

  24. Marincola FC, Virno A, Randazzo A, Lai A (2007) Effect of rubidium and cesium ions on the dimeric quaduplex formed by the Oxytricha nova telomeric repeat oligonucleotide d(GGGGTTTTGGGG). Nucleosides Nucleotides Nucleic Acids 26:1129–1132

    Article  CAS  Google Scholar 

  25. Nagesh N, Chatterji D (1995) Ammonium ion at low concentration stabilizes the G-quadruplex formation by telomeric sequence. J Biochem Biophys Methods 30:1–8

    Article  CAS  Google Scholar 

  26. Smirnov I, Shafer RH (2000) Lead is unusually effective in sequence-specific folding of DNA. J Mol Biol 296:1–5

    Article  CAS  Google Scholar 

  27. Miyoshi D, Nakao A, Sugimoto N (2003) Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca2+. Nucleic Acids Res 31:1156–1163

    Article  CAS  Google Scholar 

  28. Wei C, Tang Q, Li C (2008) Structural transition from the random coil to quadruplex of AG(3)(T(2)AG(3))(3) induced by Zn2+. Biophys Chem 132:110–113

    Article  CAS  Google Scholar 

  29. Zhang DN, Huang T, Lukeman PS, Paukstelis PJ (2014) Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad. Nucleic Acids Res 42:13422–13429

    Article  Google Scholar 

  30. Chen FM (1992) Sr2+ facilitates intermolecular G-quadruplex formation of telomeric sequences. Biochemistry 31:3769–3776

    Article  CAS  Google Scholar 

  31. Nagesh N, Bhargava P, Chatterji D (1992) Terbium(III)-induced fluorescence of four-stranded G4-DNA. Biopolymers 32:1421–1424

    Article  CAS  Google Scholar 

  32. Galezowska E, Gluszynska A, Juskowiak B (2007) Luminescence study of G-quadruplex formation in the presence of Tb3+ ion. J Inorg Biochem 101:678–685

    Article  CAS  Google Scholar 

  33. Creacy SD, Routh ED, Iwamoto F, Nagamine Y, Akman SA, Vaughn JP (2008) G4 Resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J Biol Chem 283:34626–34634

    Article  CAS  Google Scholar 

  34. Fang G, Cech TR (1993) The beta subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74:875–885

    Article  CAS  Google Scholar 

  35. Giraldo R, Rhodes D (1994) The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J 13:2411–2420

    CAS  Google Scholar 

  36. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  CAS  Google Scholar 

  37. Nonaka Y, Sode K, Ikebukuro K (2010) Screening and improvement of an anti-VEGF DNA aptamer. Molecules 15:215–225

    Article  CAS  Google Scholar 

  38. Ishikawa F, Matunis MJ, Dreyfuss G, Cech TR (1993) Nuclear proteins that bind the premessenger RNA 3′ splice-site sequence R(Uuag/G) and the human telomeric DNA-sequence D(Ttaggg)N. Mol Cell Biol 13:4301–4310

    Article  CAS  Google Scholar 

  39. Dickinson LA, Kohwi-Shigematsu T (1995) Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential. Mol Cell Biol 15:456–465

    Article  CAS  Google Scholar 

  40. Neidle S (2009) The structures of quadruplex nucleic acids and their drug complexes. Curr Opin Struct Biol 19:239–250

    Article  CAS  Google Scholar 

  41. Simonsson T (2001) G-quadruplex DNA structures--variations on a theme. Biol Chem 382:621–628

    Article  CAS  Google Scholar 

  42. Webba Da Silva M (2007) Geometric formalism for DNA quadruplex folding. Chemistry 13:9738–9745

    Article  CAS  Google Scholar 

  43. Li T, Wang E, Dong S (2010) Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium ion. Anal Chem 82:7576–7580

    Article  CAS  Google Scholar 

  44. He HZ, Wang M, Chan DS, Leung CH, Lin X, Lin JM, Ma DL (2013) A parallel G-quadruplex-selective luminescent probe for the detection of nanomolar calcium(II) ion. Methods 64:212–217

    Article  CAS  Google Scholar 

  45. Credi A, Balzani V, Langford SJ, Stoddart JF (1997) Logic operations at the molecular level. An XOR gate based on a molecular machine. J Am Chem Soc 119:2679–2681

    Article  CAS  Google Scholar 

  46. Han D, Kang H, Zhang T, Wu C, Zhou C, You M, Chen Z, Zhang X, Tan W (2014) Nucleic acid based logical systems. Chemistry 20:5866–5873

    Article  CAS  Google Scholar 

  47. Lai YH, Sun SC, Chuang MC (2014) Biosensors with built-in biomolecular logic gates for practical applications. Biosens (Basel) 4:273–300

    Article  CAS  Google Scholar 

  48. Zhao H, Dong J, Zhou F, Li B (2015) G-quadruplex-based homogenous fluorescence biosensing platform for ultrasensitive DNA detection through isothermal cycling and cascade signal amplification. Microchim Acta. doi:10.1007/s00604-015-1608-3

    Google Scholar 

  49. He HZ, Chan DS, Leung CH, Ma DL (2013) G-quadruplexes for luminescent sensing and logic gates. Nucleic Acids Res 41:4345–4359

    Article  CAS  Google Scholar 

  50. Radi AE, Acero Sanchez JL, Baldrich E, O’sullivan CK (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128:117–124

    Article  CAS  Google Scholar 

  51. Li X, Wang G, Ding X, Chen Y, Gou Y, Lu Y (2013) A “turn-on” fluorescent sensor for detection of Pb2+ based on graphene oxide and G-quadruplex DNA. Phys Chem Chem Phys 15:12800–12804

    Article  CAS  Google Scholar 

  52. Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74

    Article  CAS  Google Scholar 

  53. Ueyama H, Takagi M, Takenaka S (2002) A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation. J Am Chem Soc 124:14286–14287

    Article  CAS  Google Scholar 

  54. Yue Q, Shen T, Wang C, Wang L, Li H, Xu S, Wang H, Liu J (2013) Construction of a controllable Forster resonance energy transfer system based on G-quadruplex for DNA sensing. Biosens Bioelectron 40:75–81

    Article  CAS  Google Scholar 

  55. Qian Z, Shan X, Chai L, Chen J, Feng H (2015) A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 68:225–231

    Article  CAS  Google Scholar 

  56. Sun D, Thompson B, Cathers BE, Salazar M, Kerwin SM, Trent JO, Jenkins TC, Neidle S, Hurley LH (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 40:2113–2116

    Article  CAS  Google Scholar 

  57. Largy E, Granzhan A, Hamon F, Verga D, Teulade-Fichou MP (2013) Visualizing the quadruplex: from fluorescent ligands to light-up probes. Top Curr Chem 330:111–177

    Article  CAS  Google Scholar 

  58. Monchaud D, Allain C, Teulade-Fichou MP (2006) Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg Med Chem Lett 16:4842–4845

    Article  CAS  Google Scholar 

  59. Allain C, Monchaud D, Teulade-Fichou MP (2006) FRET templated by G-quadruplex DNA: a specific ternary interaction using an original pair of donor/acceptor partners. J Am Chem Soc 128:11890–11893

    Article  CAS  Google Scholar 

  60. Granotier C, Pennarun G, Riou L, Hoffschir F, Gauthier LR, De Cian A, Gomez D, Mandine E, Riou JF, Mergny JL, Mailliet P, Dutrillaux B, Boussin FD (2005) Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res 33:4182–4190

    Article  CAS  Google Scholar 

  61. Xu H, Gao SL, Yang Q, Pan D, Wang LH, Fan CH (2010) Amplified fluorescent recognition of G-Quadruplex folding with a cationic conjugated polymer and DNA intercalator. ACS Appl Mater Interfaces 2:3211–3216

    Article  CAS  Google Scholar 

  62. Paramasivan S, Bolton PH (2008) Mix and measure fluorescence screening for selective quadruplex binders. Nucleic Acids Res 36, e106

    Article  CAS  Google Scholar 

  63. Yang Q, Xiang J, Yang S, Zhou Q, Li Q, Tang Y, Xu G (2009) Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: I. Recognizing mixed G-quadruplex in human telomeres. Chem Commun:1103–1105

  64. Maiti S, Chaudhury NK, Chowdhury S (2003) Hoechst 33258 binds to G-quadruplex in the promoter region of human c-myc. Biochem Biophys Res Commun 310:505–512

    Article  CAS  Google Scholar 

  65. Jain AK, Bhattacharya S (2011) Interaction of G-quadruplexes with nonintercalating duplex-DNA minor groove binding ligands. Bioconjug Chem 22:2355–2368

    Article  CAS  Google Scholar 

  66. Guo Q, Lu M, Marky LA, Kallenbach NR (1992) Interaction of the dye ethidium bromide with DNA containing guanine repeats. Biochemistry 31:2451–2455

    Article  CAS  Google Scholar 

  67. Bhasikuttan AC, Mohanty J, Pal H (2007) Interaction of malachite green with guanine-rich single-stranded DNA: preferential binding to a G-quadruplex. Angew Chem Int Ed 46:9305–9307

    Article  CAS  Google Scholar 

  68. Kong DM, Ma YE, Wu J, Shen HX (2009) Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry 15:901–909

    Article  CAS  Google Scholar 

  69. Chang CC, Wu JY, Chien CW, Wu WS, Liu H, Kang CC, Yu LJ, Chang TC (2003) A fluorescent carbazole derivative: high sensitivity for quadruplex DNA. Anal Chem 75:6177–6183

    Article  CAS  Google Scholar 

  70. Dumat B, Bordeau G, Faurel-Paul E, Mahuteau-Betzer F, Saettel N, Bombled M, Metge G, Charra F, Fiorini-Debuisschert C, Teulade-Fichou MP (2011) N-phenyl-carbazole-based two-photon fluorescent probes: strong sequence dependence of the duplex vs quadruplex selectivity. Biochimie 93:1209–1218

    Article  CAS  Google Scholar 

  71. Arthanari H, Basu S, Kawano TL, Bolton PH (1998) Fluorescent dyes specific for quadruplex DNA. Nucleic Acids Res 26:3724–3728

    Article  CAS  Google Scholar 

  72. Han FXG, Wheelhouse RT, Hurley LH (1999) Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J Am Chem Soc 121:3561–3570

    Article  CAS  Google Scholar 

  73. Wei C, Han G, Jia G, Zhou J, Li C (2008) Study on the interaction of porphyrin with G-quadruplex DNAs. Biophys Chem 137:19–23

    Article  CAS  Google Scholar 

  74. Hong Y, Haussler M, Lam JW, Li Z, Sin KK, Dong Y, Tong H, Liu J, Qin A, Renneberg R, Tang BZ (2008) Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. Chemistry 14:6428–6437

    Article  CAS  Google Scholar 

  75. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang B (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun:1740–1741

  76. Arora A, Balasubramanian C, Kumar N, Agrawal S, Ojha RP, Maiti S (2008) Binding of berberine to human telomeric quadruplex - spectroscopic, calorimetric and molecular modeling studies. Febs J 275:3971–3983

    Article  CAS  Google Scholar 

  77. Sun H, Tang Y, Xiang J, Xu G, Zhang Y, Zhang H, Xu L (2006) Spectroscopic studies of the interaction between quercetin and G-quadruplex DNA. Bioorg Med Chem Lett 16:3586–3589

    Article  CAS  Google Scholar 

  78. Tan J, Ou T, Hou J, Lu Y, Huang S, Luo H, Wu J, Huang Z, Wong K, Gu L (2009) Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA. J Med Chem 52:2825–2835

    Article  CAS  Google Scholar 

  79. Ma D, Che C, Yan S (2009) Platinum(II) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA. J Am Chem Soc 131:1835–1846

    Article  CAS  Google Scholar 

  80. Shi S, Geng X, Zhao J, Yao T, Wang C, Yang D, Zheng L, Ji L (2010) Interaction of [Ru(bpy)(2)(dppz)](2+) with human telomeric DNA: preferential binding to G-quadruplexes over i-motif. Biochimie 92:370–377

    Article  CAS  Google Scholar 

  81. Alzeer J, Vummidi BR, Roth PJC, Luedtke NW (2009) Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators. Angew Chem Int Ed 48:9362–9365

    Article  CAS  Google Scholar 

  82. Mergny JL, Lacroix L, Teulade-Fichou MP, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron JP, Lehn JM, Riou JF, Garestier T, Helene C (2001) Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci U S A 98:3062–3067

    Article  CAS  Google Scholar 

  83. Teulade-Fichou MP, Carrasco C, Guittat L, Bailly C, Alberti P, Mergny JL, David A, Lehn JM, Wilson WD (2003) Selective recognition of G-qQuadruplex telomeric DNA by a bis(quinacridine) macrocycle. J Am Chem Soc 125:4732–4740

    Article  CAS  Google Scholar 

  84. Manet I, Manoli F, Zambelli B, Andreano G, Masi A, Cellai L, Monti S (2011) Affinity of the anthracycline antitumor drugs Doxorubicin and Sabarubicin for human telomeric G-quadruplex structures. Phys Chem Chem Phys 13:540–551

    Article  CAS  Google Scholar 

  85. Manet I, Manoli F, Zambelli B, Andreano G, Masi A, Cellai L, Ottani S, Marconi G, Monti S (2011) Complexes of the antitumoral drugs Doxorubicin and Sabarubicin with telomeric G-quadruplex in basket conformation: ground and excited state properties. Photochem Photobiol Sci 10:1326–1337

    Article  CAS  Google Scholar 

  86. Vummidi BR, Alzeer J, Luedtke NW (2013) Fluorescent probes for G-quadruplex structures. Chembiochem 14:540–558

    Article  CAS  Google Scholar 

  87. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 5:505–517

    Article  CAS  Google Scholar 

  88. Li T, Dong S, Wang E (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem 81:2144–2149

    Article  CAS  Google Scholar 

  89. Hao Y, Guo Q, Wu H, Guo L, Zhong L, Wang J, Lin T, Fu F, Chen G (2014) Amplified colorimetric detection of mercuric ions through autonomous assembly of G-quadruplex DNAzyme nanowires. Biosens Bioelectron 52:261–264

    Article  CAS  Google Scholar 

  90. Zhou WJ, Su J, Chai YQ, Yuan R, Xiang Y (2014) Naked eye detection of trace cancer biomarkers based on biobarcode and enzyme-assisted DNA recycling hybrid amplifications. Biosens Bioelectron 53:494–498

    Article  CAS  Google Scholar 

  91. Li D, Shlyahovsky B, Elbaz J, Willner I (2007) Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. J Am Chem Soc 129:5804–5805

    Article  CAS  Google Scholar 

  92. Li T, Wang E, Dong S (2008) G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem Commun:3654–3656

  93. Jiang X, Zhang H, Wu J, Yang X, Shao J, Lu Y, Qiu B, Lin Z, Chen G (2014) G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food. Talanta 128:445–449

    Article  CAS  Google Scholar 

  94. He K, Li W, Nie Z, Huang Y, Liu Z, Nie L, Yao S (2012) Enzyme-regulated activation of DNAzyme: a novel strategy for a label-free colorimetric DNA ligase assay and ligase-based biosensing. Chemistry 18:3992–3999

    Article  CAS  Google Scholar 

  95. Kolpashchikov DM (2008) Split DNA enzyme for visual single nucleotide polymorphism typing. J Am Chem Soc 130:2934–2935

    Article  CAS  Google Scholar 

  96. Yin B, Ye B, Tan W, Wang H, Xie C (2009) An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). J Am Chem Soc 131:14624–14625

    Article  CAS  Google Scholar 

  97. Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I (2004) Lighting up biochemiluminescence by the surface self-assembly of DNA-hemin complexes. Chembiochem 5:374–379

    Article  CAS  Google Scholar 

  98. Freeman R, Liu X, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133:11597–11604

    Article  CAS  Google Scholar 

  99. Pelossof G, Tel-Vered R, Willner I (2012) Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and Hemin/G-Quadruplex as a label. Anal Chem 84:3703–3709

    Article  CAS  Google Scholar 

  100. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101:14036–14039

    Article  CAS  Google Scholar 

  101. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107:10837–10841

    Article  CAS  Google Scholar 

  102. Wang J, Wang Y, Xue J, Zhou B, Qian Q, Wang Y, Yin J, Zhao H, Liu H, Liu S (2014) An ultrasensitive label-free assay of 8-hydroxy-2 ′-deoxyguanosine based on the conformational switching of aptamer. Biosens Bioelectron 58:22–26

    Article  CAS  Google Scholar 

  103. Zhang Z, Sharon E, Freeman R, Liu X, Willner I (2012) Fluorescence detection of DNA, adenosine-5′-triphosphate (ATP), and telomerase activity by zinc(II)-protoporphyrin IX/G-quadruplex labels. Anal Chem 84:4789–4797

    Article  CAS  Google Scholar 

  104. Ge J, Li XP, Jiang JH, Yu RQ (2014) A highly sensitive label-free sensor for Mercury ion (Hg2+) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer. Talanta 122:85–90

    Article  CAS  Google Scholar 

  105. Zhou Z, Zhu J, Zhang L, Du Y, Dong S, Wang E (2013) G-quadruplex-based fluorescent assay of S1 nuclease activity and K+. Anal Chem 85:2431–2435

    Article  CAS  Google Scholar 

  106. Ma DL, Lu LH, Lin S, He BY, Leung CH (2015) A G-triplex luminescent switch-on probe for the detection of mung bean nuclease activity. J Mater Chem B 3:348–352

    Article  CAS  Google Scholar 

  107. Guo Y, Xu P, Hu H, Zhou X, Hu J (2013) A label-free biosensor for DNA detection based on ligand-responsive G-quadruplex formation. Talanta 114:138–142

    Article  CAS  Google Scholar 

  108. Hu D, Pu F, Huang Z, Ren J, Qu X (2010) A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition. Chemistry 16:2605–2610

    Article  CAS  Google Scholar 

  109. Zhao C, Wu L, Ren J, Qu X (2011) A label-free fluorescent turn-on enzymatic amplification assay for DNA detection using ligand-responsive G-quadruplex formation. Chem Commun 47:5461–5463

    Article  CAS  Google Scholar 

  110. Guo Y, Wang Q, Wang Z, Chen X, Xu L, Hu J, Pei R (2015) Label-free detection of T4 DNA ligase and polynucleotide kinase activity based on toehold-mediated strand displacement and split G-quadruplex probes. Sens Actuators B-Chem 214:50–55

    Article  CAS  Google Scholar 

  111. Jiang H, Kong D, Shen H (2014) Amplified detection of DNA ligase and polynucleotide kinase/phosphatase on the basis of enrichment of catalytic G-quadruplex DNAzyme by rolling circle amplification. Biosens Bioelectron 55:133–138

    Article  CAS  Google Scholar 

  112. Xue Q, Wang L, Jiang W (2013) A novel label-free cascade amplification strategy based on dumbbell probe-mediated rolling circle amplification-responsive G-quadruplex formation for highly sensitive and selective detection of NAD+ or ATP. Chem Commun 49:2640–2642

    Article  CAS  Google Scholar 

  113. Wang X, Yin B, Wang P, Ye B (2013) Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme. Biosens Bioelectron 42:131–135

    Article  CAS  Google Scholar 

  114. Xue Q, Lv Y, Xu S, Zhang Y, Wang L, Li R, Yue Q, Li H, Gu X, Zhang S, Liu J (2015) Highly sensitive fluorescence assay of DNA methyltransferase activity by methylation-sensitive cleavage-based primer generation exponential isothermal amplification-induced G-quadruplex formation. Biosens Bioelectron 66:547–553

    Article  CAS  Google Scholar 

  115. Zhang P, Wu X, Yuan R, Chai Y (2015) An “off-on” electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Anal Chem 87:3202–3207

    Article  CAS  Google Scholar 

  116. Zhou J, Lai W, Zhuang J, Tang J, Tang D (2013) Nanogold-functionalized DNAzyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay. ACS Appl Mater Interfaces 5:2773–2781

    Article  CAS  Google Scholar 

  117. Jing P, Xu W, Yi H, Wu Y, Bai L, Yuan R (2014) An amplified electrochemical aptasensor for thrombin detection based on pseudobienzymic Fe3O4-Au nanocomposites and electroactive hemin/G-quadruplex as signal enhancers. Analyst 139:1756–1761

    Article  CAS  Google Scholar 

  118. Zhang H, Wang Y, Wu M, Feng Q, Shi H, Chen H, Xu J (2014) Visual electrochemiluminescence detection of telomerase activity based on multifunctional Au nanoparticles modified with G-quadruplex deoxyribozyme and luminol. Chem Commun 50:12575–12577

    Article  CAS  Google Scholar 

  119. Li T, Wang E, Dong S (2009) Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates. J Am Chem Soc 131:15082–15083

    Article  CAS  Google Scholar 

  120. Guo JH, Kong DM, Shen HX (2010) Design of a fluorescent DNA IMPLICATION logic gate and detection of Ag+ and cysteine with triphenylmethane dye/G-quadruplex complexes. Biosens Bioelectron 26:327–332

    Article  CAS  Google Scholar 

  121. Li T, Zhang L, Ai J, Dong S, Wang E (2011) Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device. ACS Nano 5:6334–6338

    Article  CAS  Google Scholar 

  122. Li T, Ackermann D, Hall AM, Famulok M (2012) Input-dependent induction of oligonucleotide structural motifs for performing molecular logic. J Am Chem Soc 134:3508–3516

    Article  CAS  Google Scholar 

  123. Wang Z, Ning L, Duan A, Zhu X, Wang H, Li G (2012) A set of logic gates fabricated with G-quadruplex assembled at an electrode surface. Chem Commun 48:7507–7509

    Article  CAS  Google Scholar 

  124. Zhao Y, Zhang Q, Wang W, Jin Y (2013) Input-dependent induction of G-quadruplex formation for detection of lead (II) by fluorescent ion logic gate. Biosens Bioelectron 43:231–236

    Article  CAS  Google Scholar 

  125. Zhou J, Amrane S, Korkut DN, Bourdoncle A, He H, Ma DL, Mergny JL (2013) Combination of i-motif and G-quadruplex structures within the same strand: formation and application. Angew Chem Int Ed 52:7742–7746

    Article  CAS  Google Scholar 

  126. Zhai W, Du C, Li X (2014) A series of logic gates based on electrochemical reduction of Pb2+ in self-assembled G-quadruplex on the gold electrode. Chem Commun 50:2093–2095

    Article  CAS  Google Scholar 

  127. Guo Y, Zhou L, Xu L, Zhou X, Hu J, Pei R (2014) Multiple types of logic gates based on a single G-quadruplex DNA strand. Sci Rep 4:7315

    Article  CAS  Google Scholar 

  128. Li T, Lohmann F, Famulok M (2014) Interlocked DNA nanostructures controlled by a reversible logic circuit. Nat Commun 5:4940

    Article  CAS  Google Scholar 

  129. Zhu J, Zhang L, Dong S, Wang E (2013) Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. ACS Nano 7:10211–10217

    Article  CAS  Google Scholar 

  130. Zhu J, Zhang L, Li T, Dong S, Wang E (2013) Enzyme-free unlabeled DNA logic circuits based on toehold-mediated strand displacement and split G-quadruplex enhanced fluorescence. Adv Mater 25:2440–2444

    Article  CAS  Google Scholar 

  131. Guo Y, Cheng J, Wang J, Zhou X, Hu J, Pei R (2014) Label-free logic modules and two-layer cascade based on stem-loop probes containing a g-quadruplex domain. Chem Asian J 9:2397–2401

    Article  CAS  Google Scholar 

  132. Chen J, Zhou S, Wen J (2015) Concatenated logic circuits based on a three-way DNA junction: a keypad-lock security system with visible readout and an automatic reset function. Angew Chem Int Ed 54:446–450

    CAS  Google Scholar 

  133. Lan T, Furuya K, Lu Y (2010) A highly selective lead sensor based on a classic lead DNAzyme. Chem Commun 46:3896–3898

    Article  CAS  Google Scholar 

  134. Zhu J, Zhang L, Zhou Z, Dong S, Wang E (2014) Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal Chem 86:312–316

    Article  CAS  Google Scholar 

  135. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    Article  CAS  Google Scholar 

  136. Park KS, Seo MW, Jung C, Lee JY, Park HG (2012) Simple and universal platform for logic gate operations based on molecular beacon probes. Small 8:2203–2212

    Article  CAS  Google Scholar 

  137. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    Article  CAS  Google Scholar 

  138. Qian L, Winfree E, Bruck J (2011) Neural network computation with DNA strand displacement cascades. Nature 475:368–372

    Article  CAS  Google Scholar 

  139. Cornett EM, Campbell EA, Gulenay G, Peterson E, Bhaskar N, Kolpashchikov DM (2012) Molecular logic gates for DNA analysis: detection of rifampin resistance in M. tuberculosis DNA. Angew Chem Int Ed 51:9075–9077

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Nos. 21275156, 31300096, 31301495, 21305154, 81471696, 41273093, 21203076), the CAS Hundred Talents program and the CAS/SAFEA International Innovation Teams program, and National Key Technology R&D Program in the 12th Five year Plan of China (2012BAD36B02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiming Hu or Renjun Pei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Yao, W., Xie, Y. et al. Logic gates based on G-quadruplexes: principles and sensor applications. Microchim Acta 183, 21–34 (2016). https://doi.org/10.1007/s00604-015-1633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1633-2

Keywords

Navigation