Skip to main content
Log in

Discrete Element Modeling of Micro-scratch Tests: Investigation of Mechanisms of CO2 Alteration in Reservoir Rocks

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The injection of CO2 into geological formations leads to geochemical re-equilibrium between the pore fluid and rock minerals. Mineral–brine–CO2 reactions can induce alteration of mechanical properties and affect the structural integrity of the storage formation. The location of alterable mineral phases within the rock skeleton is important to assess the potential effects of mineral dissolution on bulk geomechanical properties. Hence, although often disregarded, the understanding of particle-scale mechanisms responsible for alterations is necessary to predict the extent of geomechanical alteration as a function of dissolved mineral amounts. This study investigates the CO2-related rock chemo-mechanical alteration through numerical modeling and matching of naturally altered rocks probed with micro-scratch tests. We use a model that couples the discrete element method (DEM) and the bonded particle model (BPM) to perform simulations of micro-scratch tests on synthetic rocks that mimic Entrada sandstone. Experimental results serve to calibrate numerical scratch tests with DEM–BPM parameters. Sensitivity analyses indicate that the cement size and bond shear strength are the most sensitive microscopic parameters that govern the CO2-induced alteration in Entrada sandstone. Reductions in cement size lead to decrease in scratch toughness and an increase in ductility in the rock samples. This work demonstrates how small variations of microscopic bond properties in cemented sandstone can lead to significant changes in macroscopic large-strain mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adachi JI, Detournay E, Drescher A (1996) Determination of rock strength parameters from cutting tests. In: Proceedings 2nd North American Rock mechanics symposium. Rotterdam, Balkema, pp 1517–1523

  • Akono AT, Ulm FJ (2012) Fracture scaling relations for scratch tests of axisymmetric shape. J Mech Phys Solids 60:379–390. doi:10.1016/j.jmps.2011.12.009

    Article  Google Scholar 

  • Akono AT, Reis PM, Ulm FJ (2011) Scratching as a fracture process: from butter to steel. Phys Rev Lett 106:2–5. doi:10.1103/PhysRevLett.106.204302

    Article  Google Scholar 

  • Akono AT, Randall NX, Ulm FJ (2012) Experimental determination of the fracture toughness via microscratch tests: application to polymers, ceramics, and metals. J Mater Res 27:485–493. doi:10.1557/jmr.2011.402

    Article  Google Scholar 

  • Assayag N, Matter J, Ader M, Goldberg D, Agrinier P (2009) Water–rock interactions during a CO2 injection field-test: implications on host rock dissolution and alteration effects. Chem Geol 265:227–235. doi:10.1016/j.chemgeo.2009.02.007

    Article  Google Scholar 

  • Bachu S, Bennion DB (2009) Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions. Int J Greenh Gas Control 3:494–501. doi:10.1016/j.ijggc.2008.11.002

    Article  Google Scholar 

  • Bakker E, Hangx SJT, Niemeijer AR, Spiers CJ (2016) Frictional behaviour and transport properties of simulated fault gouges derived from a natural CO2 reservoir. Int J Greenh Gas Control 54(Part 1):70–83. doi:10.1016/j.ijggc.2016.08.029

    Article  Google Scholar 

  • Bemer E, Nguyen MT, Dautriat J, Adelinet M, Fleury M, Youssef S (2016) Impact of chemical alteration on the poromechanical properties of carbonate rocks. Geophys Prospect 64(4):810–827. doi:10.1111/1365-2478.12387

    Article  Google Scholar 

  • Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Raton

    Google Scholar 

  • Canal J, Delgado J, Falcón I, Yang Q, Juncosa R, Barrientos V (2013) Injection of CO2-saturated water through a siliceous sandstone plug from the Hontomin test site (Spain): experiment and modeling. Environ Sci Technol 47:159–167. doi:10.1021/es3012222

    Article  Google Scholar 

  • Carroll SA, McNab WW, Torres SC (2011) Experimental study of cement—sandstone/shale—brine—CO2 interactions. Geochem Trans 12:9. doi:10.1186/1467-4866-12-9

    Article  Google Scholar 

  • Carroll S, Hao Y, Smith M, Sholokhova Y (2013) Development of scaling parameters to describe CO2—rock interactions within Weyburn–Midale carbonate flow units. Int J Greenh Gas Control 16:S185–S193. doi:10.1016/j.ijggc.2012.12.026

    Article  Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  • Ergenzinger C, Seifried R, Eberhard P (2011) A discrete element model to describe failure of strong rock in uniaxial compression. Granul Matter 13:341–364. doi:10.1007/s10035-010-0230-7

    Article  Google Scholar 

  • Espinoza DN, Kim SH, Santamarina JC (2011) CO2 geological storage—geotechnical implications. KSCE J Civ Eng 15:707–719. doi:10.1007/s12205-011-0011-9

    Article  Google Scholar 

  • Fernandez AL, Santamarina JC (2001) Effect of cementation on the small-strain parameters of sands. Can Geotech J 38:191–199. doi:10.1139/cgj-38-1-191

    Article  Google Scholar 

  • Gunter W, Perkins E, Hutcheon I (2000) Aquifer disposal of acid gases: modelling of water–rock reactions for trapping of acid wastes. Appl Geochemistry 15:1085–1095. doi:10.1016/S0883-2927(99)00111-0

    Article  Google Scholar 

  • Hangx S, Bakker E, Bertier P, Nover G, Busch A (2015) Chemical–mechanical coupling observed for depleted oil reservoirs subjected to long-term CO2-exposure—a case study of the Werkendam natural CO2 analogue field. Earth Planet Sci Lett 428:230–242. doi:10.1016/j.epsl.2015.07.044

    Article  Google Scholar 

  • Hazzard JF, Young RP (2004) Dynamic modelling of induced seismicity. Int J Rock Mech Min Sci 41(8):1365–1376. doi:10.1016/j.ijrmms.2004.09.005

    Article  Google Scholar 

  • Hernandez-Uribe LA, Aman MD, Espinoza DN (2017) Assessment of mudrock brittleness with micro scratch testing. Rock Mech Rock Eng. doi:10.1007/s00603-017-1279-y

    Google Scholar 

  • Hovorka SD, Benson SM, Doughty C, Freifeild BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13:105–121. doi:10.1306/eg.11210505011

    Article  Google Scholar 

  • Hovorka SD, Meckel TA, Treviño RH (2013) Monitoring a large-volume injection at Cranfield, Mississippi—project design and recommendations. Int J Greenh Gas Control 18:345–360. doi:10.1016/j.ijggc.2013.03.021

    Article  Google Scholar 

  • Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool-rock interaction I: rock cutting. Int J Numer Anal Methods Geomech 37:1913–1929. doi:10.1002/nag.2113

    Article  Google Scholar 

  • Jiang MJ, Yan HB, Zhu HH, Utili S (2011) Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput Geotech 38:14–29. doi:10.1016/j.compgeo.2010.09.001

    Article  Google Scholar 

  • Jung JW, Santamarina JC, Soga K (2012) Stress–strain response of hydrate-bearing sands: numerical study using discrete element method simulations. J Geophys Res 117:B04202. doi:10.1029/2011JB009040

    Google Scholar 

  • Kaszuba JP, Janecky DR, Snow MG (2005) Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: relevance to the integrity of a geologic carbon repository. Chem Geol 217:277–293. doi:10.1016/j.chemgeo.2004.12.014

    Article  Google Scholar 

  • Kim S, Santamarina JC (2014) CO2 geological storage: hydro-chemo-mechanical analyses and implications. Greenh. Gases Sci Technol 4:528–543. doi:10.1002/ghg.1421

    Article  Google Scholar 

  • Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dyn Int J 12:140–152. doi:10.1504/PCFD.2012.047457

    Article  Google Scholar 

  • Kutchko BG, Strazisar BR, Lowry GV, Dzombak DA, Thaulow N (2008) Rate of CO2 attack on hydrated class H well cement under geologic sequestration conditions. Environ Sci Technol 42:6237–6242. doi:10.1021/es800049r

    Article  Google Scholar 

  • Le Guen Y, Renard F, Hellmann R, Brosse E, Collombet M, Tisserand D, Gratier J-P (2007) Enhanced deformation of limestone and sandstone in the presence of high P CO2 fluids. J Geophys Res. doi:10.1029/2006JB004637

    Google Scholar 

  • Liteanu E, Niemeijer A, Spiers CJ, Peach CJ, de Bresser JHP (2012) The effect of CO2 on creep of wet calcite aggregates. J Geophys Res Solid Earth. doi:10.1029/2011JB008789

    Google Scholar 

  • Lu J, Kharaka YK, Thordsen JJ, Horita J, Karamalidis A, Griffith C, Hakala JA, Ambats G, Cole DR, Phelps TJ, Manning MA, Cook PJ, Hovorka SD (2012) CO2–rock–brine interactions in lower Tuscaloosa formation at Cranfield CO2 sequestration site, Mississippi, U.S.A. Chem Geol 291:269–277. doi:10.1016/j.chemgeo.2011.10.020

    Article  Google Scholar 

  • Major JR, Eichhubl P, Dewers TA, Urquhart AS, Olson JE, Holder J et al (2014) The effect of CO2-related diagenesis on geomechanical failure parameters: fracture testing of CO2-altered reservoir and seal rocks from a natural analog at Crystal Geyser, Utah. In: 48th US rock mechanics/geomechanics symposium

  • Mason HE, Du Frane WL, Walsh SDC, Dai Z, Charnvanichborikarn S, Carroll SA (2013) Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach. Environ Sci Technol 47:1745–1752. doi:10.1021/es3039906

    Article  Google Scholar 

  • Obermayr M, Dressler K, Vrettos C, Eberhard P (2013) A bonded-particle model for cemented sand. Comput Geotech 49:299–313. doi:10.1016/j.compgeo.2012.09.001

    Article  Google Scholar 

  • Pokrovsky OS, Golubev SV, Schott J (2005) Dissolution kinetics of calcite, dolomite and magnesite at 25 & #xB0;C and 0–50 atm pCO2. Chem Geol 217:239–255. doi:10.1016/j.chemgeo.2004.12.012

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364. doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  • Renard F, Gundersen E, Hellmann R, Collombet M, Le Guen Y (2008) Numerical modeling of the effect of carbon dioxide sequestration on the rate of pressure solution creep in limestone: preliminary results. Oil gas Sci Technol 60:381–399. doi:10.2516/ogst:2005023

    Article  Google Scholar 

  • Richard T, Detournay E, Drescher A, Nicodeme P, Fourmaintraux D (1998) The scratch test as a means to measure strength of sedimentary rocks. In: SPE/ISRM Rock Mechanics in Petroleum Engineering. doi:10.2118/47196-MS

  • Richard T, Dagrain F, Poyol E, Detournay E (2012) Rock strength determination from scratch tests. Eng Geol 147–148:91–100. doi:10.1016/j.enggeo.2012.07.011

    Article  Google Scholar 

  • Rinehart AJ, Dewers TA, Broome ST, Eichhubl P (2016) Effects of CO2 on mechanical variability and constitutive behavior of the Lower Tuscaloosa Formation, Cranfield Injection Site, USA. Int J Greenh Gas Control 53:305–318. doi:10.1016/j.ijggc.2016.08.013

    Article  Google Scholar 

  • Rimmelé G, Barlet-Gouédard V, Renard F (2010) Evolution of the petrophysical and mineralogical properties of two reservoir rocks under thermodynamic conditions relevant for CO2 geological storage at 3 km depth. Oil Gas Sci Technol Rev l’Institut Français du Pétrole 65:565–580. doi:10.2516/ogst/2009071

    Article  Google Scholar 

  • Rutqvist J, Tsang C-F (2002) A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environ Geol 42:296–305. doi:10.1007/s00254-001-0499-2

    Article  Google Scholar 

  • Schei G, Fjær E, Detournay E, Kenter CJ, Fuh GF, Zausa F (2000) The scratch test: an attractive technique for determining strength and elastic properties of sedimentary rocks. In: SPE Annual Technical Conference and Exhibition. doi:10.2118/63255-MS

  • Suarez-Rivera R, Stenebråten J, Dagrain F (2002) Continuous scratch testing on core allows effective calibration of log-derived mechanical properties for use in sanding prediction evaluation. doi: 10.2118/78157-MS

  • Sun Y, Aman M, Espinoza DN (2016a) Assessment of mechanical rock alteration caused by CO2–water mixtures using indentation and scratch experiments. Int J Greenh Gas Control 45:9–17. doi:10.1016/j.ijggc.2015.11.021

    Article  Google Scholar 

  • Sun Z, Balhoff MT, Espinoza DN (2016b) Pore-scale modeling of the effect of cementation on rock indentation test. In: 50th US rock mechanics/geomechanics symposium

  • Sun Z, Espinoza DN, Balhoff MT (2016c) Discrete element modeling of indentation tests to investigate mechanisms of CO2-related chemo-mechanical rock alteration. J Geophys Res Solid Earth. doi:10.1002/2016JB013554

    Google Scholar 

  • Utili S, Nova R (2008) DEM analysis of bonded granular geomaterials. Int J Numer Anal Methods Geomech 32:1997–2031. doi:10.1002/nag.728

    Article  Google Scholar 

  • Wang Y, Alonso-Marroquin F (2009) A finite deformation method for discrete modeling: particle rotation and parameter calibration. Granul Matter 11:331–343. doi:10.1007/s10035-009-0146-2

    Article  Google Scholar 

  • Wang Y-H, Leung S-C (2008) A particulate-scale investigation of cemented sand behavior. Can Geotech J 45:29–44. doi:10.1139/T07-070

    Article  Google Scholar 

  • Wigley M, Kampman N, Dubacq B, Bickle M (2012) Fluid-mineral reactions and trace metal mobilization in an exhumed natural CO2 reservoir, Green River, Utah. Geology 40:555–558. doi:10.1130/G32946.1

    Article  Google Scholar 

  • Wredenberg F, Larsson P-L (2009) Scratch testing of metals and polymers: experiments and numerics. Wear 266:76–83. doi:10.1016/j.wear.2008.05.014

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science and Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. We would like to thank Maryam Mirabolghasemi from the University of Texas at Austin for valuable suggestions during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nicolas Espinoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Espinoza, D.N., Balhoff, M.T. et al. Discrete Element Modeling of Micro-scratch Tests: Investigation of Mechanisms of CO2 Alteration in Reservoir Rocks. Rock Mech Rock Eng 50, 3337–3348 (2017). https://doi.org/10.1007/s00603-017-1306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1306-z

Keywords

Navigation