Skip to main content
Log in

Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

X-ray computed microtomography (µCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for µCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93–98 μm) and mean throat size (~23–29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen SR, Cas RAF (1998) Rhyolitic fallout and pyroclastic density current deposits from a phreatoplinian eruption in the eastern Aegean Sea, Greece. J Volcanol Geotherm Res 86:219–251

    Article  Google Scholar 

  • Allen SR, Stadlbauer E, Keller J (1999) Stratigraphy of the Kos Plateau Tuff: product of a major quaternary explosive rhyolitic eruption in the eastern Aegean, Greece. Int J Earth Sci 88(1):132–156

    Article  Google Scholar 

  • Allen SR (2001) Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. J Volcanol Geotherm Res 105(1–2):141–162

    Article  Google Scholar 

  • Allen SR, Cas RAF (2001) Transport of pyroclastic flows across the sea during the explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. Bull Volcanol 62(6–7):441–456. doi:10.1007/s004450000107

    Article  Google Scholar 

  • Allen SR, McPhie J (2001) Syn-eruptive chaotic breccia on Kos, Greece, associated with an energetic pyroclastic flow. Bull Volcanol 63(6):421–432. doi:10.1007/s004450100162

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Mineral Meteorol 146:54–62

    Google Scholar 

  • Bai L, Baker DR, Rivers M (2008) Experimental study of bubble growth in Stromboli basalt melts at 1 atm. Earth Planet Sci Lett 267(3–4):533–547. doi:10.1016/j.epsl.2007.11.063

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  • Bernard ML, Zamora M, Geraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelee volcano (Martinique, Lesser Antilles). J Geophys Res 112:B05205. doi:10.1029/2006JB004385

    Article  Google Scholar 

  • Blower JD (2001) Factors controlling permeability-porosity relationships in magma. Bull Volcanol 63(7):497–504. doi:10.1007/s004450100172

    Article  Google Scholar 

  • Bouvet de Maisonneuve C, Bachmann O, Burgisser A (2008) Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a rhyolitic caldera-forming eruption. Bull Volcanol . doi:10.1007/s00445-008-0250-x

    Google Scholar 

  • Burgisser A, Gardner JE (2005) Experimental constraints on degassing and permeability in volcanic conduit flow. Bull Volcanol 67(1):42–56. doi:10.1007/s00445-004-0359-5

    Article  Google Scholar 

  • Carman PC (1937) Fluid flow through a granular bed. Trans Inst Chem Eng London 15:150–156

    Google Scholar 

  • Celzard A, Mareche JF (2002) Fluid flow in highly porous anisotropic graphites. J Phys Condens Matter 14(6):1119–1129

    Article  Google Scholar 

  • Costa A (2006) Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33(2):L02318. doi:10.1029/2005GL025134

    Article  Google Scholar 

  • Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273(5278):1054–1055

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2005) Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: a comparison of closure models for the granular stress. J Volcanol Geotherm Res 143(1–3):113–132. doi:10.1016/j.jvolgeores.2004.09.013

    Article  Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2003) Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426(6965):432–435

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39:321–356. doi:10.1146/annurev.fluid.39.050905.110207

    Article  Google Scholar 

  • Gualda GAR (2006) Crystal size distributions derived from 3D datasets: sample size versus uncertainties. J Petrol 47(6):1245–1254. doi:10.1093/petrology/egl010

    Article  Google Scholar 

  • Gualda GAR, Rivers M (2006) Quantitative 3D petrography using X-ray tomography: application to Bishop Tuff pumice clasts. J Volcanol Geotherm Res 154(1–2):48–62. doi:10.1016/j.jvolgeores.2005.09.019

    Article  Google Scholar 

  • Gualda GAR, Anderson AT (2007) Magnetite scavenging and the buoyancy of bubbles in magmas. Part 1: discovery of a pre-eruptive bubble in Bishop rhyolite. Contrib Mineral Petrol 153(6):733–742. doi:10.1007/s00410-006-0173-5

    Article  Google Scholar 

  • Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27(4):381–400

    Article  Google Scholar 

  • Ketcham RA (2005a) Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. J Struct Geol 27(7):1217–1228. doi:10.1016/j.jsg.2005.02.006

    Article  Google Scholar 

  • Ketcham RA (2005b) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1(32–41). doi: 10.1130/GES00001.1

  • Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58(2–3):87–100

    Article  Google Scholar 

  • Le Pennec JL, Hermitte D, Dana I, Pezard P, Coulon C, Cocheme JJ, Mulyadi E, Ollagnier F, Revest C (2001) Electrical conductivity and pore-space topology of Merapi lavas: implications for the degassing of porphyritic andesite magmas. Geophys Res Lett 28(22):4283–4286

    Article  Google Scholar 

  • Lindquist WB, Venkatarangan A (1999) Investigating 3D geometry of porous media from high resolution images. Phys Chem Earth Part A 24(7):593–599

    Article  Google Scholar 

  • Lindquist WB, Venkatarangan A, Dunsmuir J, Wong TF (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J Geophys Res 105(B9):21509–21527

    Article  Google Scholar 

  • Llewellin EW, Manga A (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143(1–3):205–217. doi:10.1016/j.jvolgeores.2004.09.018

    Article  Google Scholar 

  • Marti J, Soriano C, Dingwell DB (1999) Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation. Nature 402(6762):650–653

    Article  Google Scholar 

  • Mastin LG, Ghiorso MS (2000) A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open-File Rep 00-209

  • Mastin LG (2005) The controlling effect of viscous dissipation on magma flow in silicic conduits. J Volcanol Geotherm Res 143(1–3):17–28

    Article  Google Scholar 

  • Melnik O, Barmin AA, Sparks RSJ (2005) Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J Volcanol Geotherm Res 143(1–3):53–68. doi:10.1016/j.jvolgeores.2004.09.010

    Article  Google Scholar 

  • Mortensen NA, Okkels F, Bruus H (2005) Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels. Physical Review E 71(5). doi: 10.1103/PhysRevE.71.057301

  • Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: An experimental determination. Bull Volcanol 67(6):526–538. doi:10.1007/s00445-004-0392-4

    Article  Google Scholar 

  • Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology 36(5):399–402. doi:10.1130/G24605A.1

    Article  Google Scholar 

  • Namiki A, Manga M (2008) Transition between fragmentation and permeable outgassing of low viscosity magmas. J Volcanol Geotherm Res 169(1–2):48–60. doi:10.1016/j.jvolgeores.2007.07.020

    Article  Google Scholar 

  • Oh W, Lindquist WB (1999) Image thresholding by indicator kriging. Ieee Transactions on Pattern Analysis and Machine Intelligence 21(7):590–602

    Article  Google Scholar 

  • Okumura S, Nakamura M, Tsuchiyama A (2006) Shear-induced bubble coalescence in rhyolitic melts with low vesicularity. Geophys Res Lett 33(20):L20316. doi:10.1029/2006GL027347

    Article  Google Scholar 

  • Okumura S, Nakamura M, Tsuchiyama A, Nakano T, Uesugi K (2008) Evolution of bubble microstructure in sheared rhyolite: Formation of a channel-like bubble network. J Geophys Res 113:B07208. doi:10.1029/2007JB005362

    Article  Google Scholar 

  • Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett. . doi:10.1016/j.epsl.2009.02.036

    Google Scholar 

  • Papale P (1999) Strain-induced magma fragmentation in explosive eruptions. Nature 397:425–428

    Article  Google Scholar 

  • Polacci M, Papale P, Rosi M (2001) Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bull Volcanol 63(2–3):83–97. doi:10.1007/s004450000123

    Article  Google Scholar 

  • Polacci M, Pioli L, Rosi M (2003) The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull Volcanol 65(6):418–432. doi:10.1007/s00445-002-0268-4

    Article  Google Scholar 

  • Polacci M (2005) Constraining the dynamics of volcanic eruptions by characterization of pumice textures. Ann Geophys 48(4–5):731–738

    Google Scholar 

  • Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33(13):L13312. doi:10.1029/2006GL026241

    Article  Google Scholar 

  • Polacci M, Baker DR, Bai LP, Mancini L (2008) Large vesicles record pathways of degassing at basaltic volcanoes. Bull Volcanol 70(9):1023–1029. doi:10.1007/s00445-007-0184-8

    Article  Google Scholar 

  • Polacci M, Baker DR, Mancini L, Favretto S, Hill RJ (2009) Vesiculation in magmas from Stromboli and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems. J Geophys Res 114:B01206. doi:10.1029/2008JB005672

    Article  Google Scholar 

  • Prodanovic M, Lindquist WB, Seright RS (2006) Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging. J Colloid Interface Sci 298(1):282–297. doi:10.1016/j.jcis.2005.11.053

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL (1998) Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling. J Geophys Res 103(B8):18223–18251

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL (2001) Recognition and separation of discrete objects within complex 3D voxelized structures. Comput Geosci 27(4):441–454

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL, Tsentalovich EP (2007a) Statistical analysis of bubble and crystal size distributions: Formulations and procedures. J Volcanol Geotherm Res 164(3):95–111. doi:10.1016/j.jvolgeores.2007.04.006

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL, Carlson WD (2007b) Statistical analysis of bubble and crystal size distributions: application to colorado plateau basalts. J Volcanol Geotherm Res 164(3):112–126. doi:10.1016/j.jvolgeores.2007.04.007

    Article  Google Scholar 

  • Ramos JI (1999) Two-dimensional simulations of magma ascent in volcanic conduits. Int J Numer Meth Fluids 29:765–789

    Article  Google Scholar 

  • Rosi M, Landi P, Polacci M, Di Muro A, Zandomeneghi D (2004) Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-BP Plinian eruption of Quilotoa Volcano (Ecuador). Bull Volcanol 66(4):307–321. doi:10.1007/s00445-003-0312-z

    Article  Google Scholar 

  • Rust AC, Manga M, Cashman KV (2003) Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. J Volcanol Geotherm Res 122(1–2):111–132

    Article  Google Scholar 

  • Rust AC, Cashman KV (2004) Permeability of vesicular silicic magma: inertial and hysteresis effects. Earth Planet Sci Lett 228(1–2):93–107. doi:10.1016/j.epsl.2004.09.025

    Article  Google Scholar 

  • Ruth D, Ma H (1990) On the derivation of the Forchheimer equation by means of the averaging theorem. Transp Porous Med 7(3):255–264

    Article  Google Scholar 

  • Saar MO, Manga M (1999) Permeability-porosity relationship in vesicular basalts. Geophys Res Lett 26(1):111–114

    Article  Google Scholar 

  • Scholes ON, Clayton SA, Hoadley AFA, Tiu C (2007) Permeability anisotropy due to consolidation of compressible porous media. Transp Porous Med 68(3):365–387. doi:10.1007/s11242-006-9048-5

    Article  Google Scholar 

  • Shin H, Lindquist WB, Sahagian DL, Song S-R (2005) Analysis of the vesicular structure of basalts. Comput Geosci 31(4):473–487. doi:10.1016/j.cageo.2004.10.013

    Article  Google Scholar 

  • Song SR, Jones KW, Lindquist WB, Dowd BA, Sahagian DL (2001) Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks. Bull Volcanol 63(4):252–263. doi:10.1007/s004450100141

    Article  Google Scholar 

  • Stasiuk MV, Barclay J, Caroll MR, Jaupart C, Ratté JC, Sparks RSJ, Tait SR (1996) Degassing during magma ascent in the Mule Creek vent (USA). Bull Volcanol 58:117–130

    Article  Google Scholar 

  • Thomas N, Jaupart C, Vergniolle S (1994) J Geophys Res 99(B8):15633–15644

    Article  Google Scholar 

  • Wright HMN, Roberts JJ, Cashman KV (2006) Permeability of anisotropic tube pumice: model calculations and measurements. Geophys Res Lett 33:L17316. doi:10.1029/2006GL027224

    Article  Google Scholar 

  • Yoshida S, Koyaguchi T (1999) A new regime of volcanic eruption due to the relative motion between liquid and gas. J Volcanol Geotherm Res 89(1–4):303–315

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Swiss NSF grant #200021-111709/1 to WD and OB. WD greatly acknowledges the UGCT team at the University of Ghent (B. Masschaele, V. Cnudde, J. Vlassenbroeck, M. Dierick and L. Van Hoorebeke) and kindly thanks B. Lindquist, R. Ketcham and A. Proussevitch for the use of their respective softwares and quick response to questions. We are grateful for constructive comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Degruyter.

Additional information

Editorial responsibility: D.B. Dingwell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degruyter, W., Bachmann, O. & Burgisser, A. Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc). Bull Volcanol 72, 63–74 (2010). https://doi.org/10.1007/s00445-009-0302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-009-0302-x

Keywords

Navigation