Skip to main content
Log in

Large vesicles record pathways of degassing at basaltic volcanoes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles, exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations of vesicle size distributions and demonstrate that this type of vesicle invariably forms in magmas with vesicularities > 0.30 (and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Allard P, Carbonnelle J, Métrich N, Loyer H, Zettwoog P (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330

    Article  Google Scholar 

  • Andronico D, Caruso S, Cristaldi A, Del Carlo P (2005) Rapporto sulle ceneri emesse dal vulcano Stromboli nel semestre Gennaio-Giugno 2005. UFVG report Prot. Int. no. UFVG2005/72

  • Andronico D, Cristaldi A, Del Carlo P (2006a) Caratterizzazione delle ceneri emesse dal vulcano Stromboli nel periodo Luglio-Dicembre 2005. UFVG report Prot. Int. no. UFVG2006/25

  • Andronico D, Corsaro RA, Cristaldi A, Polacci M (2006b) Monitoring highly energetic Strombolian activity at Stromboli volcano (Aeolian Islands, Italy): the example of the 9 January 2005 explosive event. Geophys Res Abstr 8 02305

  • Baker DR, Freda C (1999) Ising models of undercooled binary system crystallization: comparison with experimental and pegmatite textures. Am Mineral 84:725–732

    Google Scholar 

  • Bertagnini A, Coltelli M, Landi P, Pompilio M, Rosi M (1999) Violent explosions yield new insights into dynamics of Stromboli volcano. Eos Trans AGU 80:633–636

    Article  Google Scholar 

  • Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian Archipelago, Italy): An open window on the deep-feeding system of a steady state basaltic volcano. J Geophys Res 108:2336–2350

    Article  Google Scholar 

  • Bunde A, Havlin S (1991) Fractals and disordered systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Burton MR, Mader HM, Polacci M (2007a) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sci Lett, DOI 10.1016/j.epsl.2007.08.028

  • Burton MR, Allard P, Murè F, La Spina A (2007b) Magmatic gas composition reveals the source of Strombolian explosive activity. Science 317:227–230

    Article  Google Scholar 

  • Cashman KV, Mangan MT, Newman S (1994) Surface degassing and modifications to vesicle size distributions in Kilauea basalt. J Volcanol Geotherm Res 61:45–68

    Article  Google Scholar 

  • Corsaro RA, Miraglia L (2005) Attività di monitoraggio petrologico Stromboli-I semestre 2005. UFVG report Prot. Int. no. UFVG2005/70

  • Corsaro RA, Miraglia L (2006) Attività di monitoraggio petrologico:Stromboli-II semestre 2005. UFVG report Prot. Int. no. UFVG2006/027

  • Corsaro RA, Miraglia L, Zanon V (2005) Petrologic monitoring of glasses in the pyroclastites erupted in February 2004 by the Stromboli Volcano, Aeolian Islands, Southern Italy. J Volcanol Geotherm Res 139:339–343

    Article  Google Scholar 

  • Francalanci L, Tommasini S, Conticelli S (2004) The volcanic activity of Stromboli in the 1906–1998 AD period: mineralogical, geochemical and isotope data relevant to the understanding of the plumbing system. J Volcanol Geotherm Res 131:179–211

    Article  Google Scholar 

  • Francis PW, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557

    Article  Google Scholar 

  • Gaonach H, Lovejoy S, Stix J, Schertzer D (1996) A scaling growth model for bubbles in basaltic lava flows. Earth Planet Sci Lett 139:395–409

    Article  Google Scholar 

  • Harris AJL, Stevenson D (1997) Magma budgets and steady-state activity of Vulcano and Stromboli. Geophys Res Lett 24:1043–1046

    Article  Google Scholar 

  • Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1:32–41

    Article  Google Scholar 

  • Lautze NC, Houghton BF (2005) Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli volcano, Italy. Geology 33:425–428

    Article  Google Scholar 

  • Lorenz CD, Ziff RM (2001) Precise determination of the critical percolation threshold for the three-dimensional “Swiss cheese” model using a growth algorithm. J Chem Phys 114:3659–3661

    Article  Google Scholar 

  • Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geotherm Res 73:1–18

    Article  Google Scholar 

  • Mangan MT, Cashman KV, Newman S (1993) Vesiculation of basaltic magma during eruption. Geology 21:157–160

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands). J Petrol 42:1471–1490

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Landi P, Rosi M, Belhadj O (2005) Triggering mechanism at the origin of paroxysm at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. Geophys Res Lett 32:L10305, DOI 10.1029/2004GL022257

    Article  Google Scholar 

  • Polacci M, Papale P (1997) The evolution of lava flows from ephemeral vents at Mount Etna: insights from vesicle distribution and morphological studies. J Volcanol Geotherm Res 76:1–17

    Article  Google Scholar 

  • Polacci M, Cashman KV, Kauahikaua JP (1999) Textural characterization of the pahoehoe–aa transition in Hawaiian basalt. Bull Volcanol 60:595–609

    Article  Google Scholar 

  • Polacci M, Corsaro RA, Andronico D (2006a) Coupled textural and compositional characterization of basaltic scoria: insights into the transition from Strombolian to fire-fountain activity at Mt Etna, Italy. Geology 3:201–204

    Article  Google Scholar 

  • Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006b) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33:L13312 DOI 10.1029/2006GL026241

    Article  Google Scholar 

  • Ripepe M, Marchetti E, Ulivieri G, Harris A, Dehn J, Burton MR, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33:341–344

    Article  Google Scholar 

  • Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli volcano (Italy). Bull Volcanol 62:294–300

    Article  Google Scholar 

  • Saar MO, Manga M (1999) Permeability–porosity relationship in vesicular basalts. Geophys Res Lett 26:111–114

    Article  Google Scholar 

  • Sable J, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354

    Article  Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory, revised second edition. Taylor and Francis, London

    Google Scholar 

Download references

Acknowledgements

We thank the SYRMEP beamline of Elettra Sincrotrone Trieste, Stefano Favretto and Livia Colò for their help in the acquisition of tomographic images of natural samples and Mark Rivers of GeoSoilEnviroCARS, Advanced Photon Source, for his help with microtomography of the experimental samples. We also thank Daniele Andronico, Mauro Rosi and Mario Zaia for sample collection. Thoughtful reviews by N. Métrich and an anonymous reviewer greatly improved the manuscript. This work was supported by Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile, and NSERC Discovery grant to D.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Polacci.

Additional information

Editorial responsibility: Don Dingwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polacci, M., Baker, D.R., Bai, L. et al. Large vesicles record pathways of degassing at basaltic volcanoes. Bull Volcanol 70, 1023–1029 (2008). https://doi.org/10.1007/s00445-007-0184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-007-0184-8

Keywords

Navigation