Skip to main content

Advertisement

Log in

Molecular Communication from Skeletal Muscle to Bone: A Review for Muscle-Derived Myokines Regulating Bone Metabolism

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Besides the mechanical loading-dependent paradigm, skeletal muscle also serves as an endocrine organ capable of secreting cytokines to modulate bone metabolism. In this review, we focused on reviewing the myokines involved in communication from skeletal muscle to bone, i.e. (1) myostatin and myostatin-binding proteins including follistatin and decorin, (2) interleukins including interleukin-6 (IL-6), interleukin-7 (IL-7) and interleukin-15 (IL-15), (3) insulin-like growth factor 1 (IGF-1) and its binding proteins, (4) other myokines including PGC-1α-irisin system and osteoglycin (OGN). To better understand the molecular communication from skeletal muscle to bone, we have summarized the recent advances in muscle-derived cytokines regulating bone metabolism in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schipilow JD, Macdonald HM, Liphardt AM, Kan M, Boyd SK (2013) Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: an HR-pQCT study. Bone 56(2):281–289. doi:10.1016/j.bone.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  2. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275(2):1081–1101. doi:10.1002/ar.a.10119

    Article  PubMed  Google Scholar 

  3. Verschueren S, Gielen E, O’Neill TW, Pye SR, Adams JE, Ward KA, Wu FC, Szulc P, Laurent M, Claessens F, Vanderschueren D, Boonen S (2013) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 24(1):87–98. doi:10.1007/s00198-012-2057-z

    Article  CAS  PubMed  Google Scholar 

  4. Harry LE, Sandison A, Paleolog EM, Hansen U, Pearse MF, Nanchahal J (2008) Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J Orthop Res 26(9):1238–1244. doi:10.1002/jor.20649

    Article  PubMed  Google Scholar 

  5. Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9(11):2482–2496. doi:10.1074/mcp.M110.002113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B (2003) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24(2–3):113–119

    Article  CAS  PubMed  Google Scholar 

  7. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90. doi:10.1038/387083a0

    Article  CAS  PubMed  Google Scholar 

  8. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3(5):e79. doi:10.1371/journal.pgen.0030079

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74. doi:10.1038/ng0997-71

    Article  CAS  PubMed  Google Scholar 

  10. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350(26):2682–2688. doi:10.1056/NEJMoa040933

    Article  CAS  PubMed  Google Scholar 

  11. Saremi A, Gharakhanloo R, Sharghi S, Gharaati MR, Larijani B, Omidfar K (2010) Effects of oral creatine and resistance training on serum myostatin and GASP-1. Mol Cell Endocrinol 317(1–2):25–30. doi:10.1016/j.mce.2009.12.019

    Article  CAS  PubMed  Google Scholar 

  12. Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE (2010) Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc 42(11):2023–2029. doi:10.1249/MSS.0b013e3181e0b9a8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bialek P, Parkington J, Li X, Gavin D, Wallace C, Zhang J, Root A, Yan G, Warner L, Seeherman HJ, Yaworsky PJ (2014) A myostatin and activin decoy receptor enhances bone formation in mice. Bone 60:162–171. doi:10.1016/j.bone.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Park JJ, Berggren JR, Hulver MW, Houmard JA, Hoffman EP (2006) GRB14, GPD1, and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle. Physiol Genomics 27(2):114–121. doi:10.1152/physiolgenomics.00045.2006

    Article  CAS  PubMed  Google Scholar 

  15. Elkasrawy MN, Hamrick MW (2010) Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact 10(1):56–63

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiu CS, Peekhaus N, Weber H, Adamski S, Murray EM, Zhang HZ, Zhao JZ, Ernst R, Lineberger J, Huang L, Hampton R, Arnold BA, Vitelli S, Hamuro L, Wang WR, Wei N, Dillon GM, Miao J, Alves SE, Glantschnig H, Wang F, Wilkinson HA (2013) Increased muscle force production and bone mineral density in ActRIIB-Fc-treated mature rodents. J Gerontol A Biol Sci Med Sci 68(10):1181–1192. doi:10.1093/gerona/glt030

    Article  CAS  PubMed  Google Scholar 

  17. Rothney MP, Martin FP, Xia Y, Beaumont M, Davis C, Ergun D, Fay L, Ginty F, Kochhar S, Wacker W, Rezzi S (2012) Precision of GE Lunar iDXA for the measurement of total and regional body composition in nonobese adults. J Clin Densitom 15(4):399–404. doi:10.1016/j.jocd.2012.02.009

    Article  PubMed  Google Scholar 

  18. Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, Beckmann D, Paruzel P, Bertrand J, Redlich K, Koers-Wunrau C, Stratis A, Korb-Pap A, Pap T (2015) Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med 21(9):1085–1090. doi:10.1038/nm.3917

    Article  CAS  PubMed  Google Scholar 

  19. Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K (2004) Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol 270(1):19–30. doi:10.1016/j.ydbio.2004.01.046

    Article  CAS  PubMed  Google Scholar 

  20. Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, Thissen JP (2009) Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol Endocrinol Metab 297(1):E157–E164. doi:10.1152/ajpendo.00193.2009

    Article  CAS  PubMed  Google Scholar 

  21. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, Wright JF, Barker C, Ehrmantraut G, Holmstrom J, Trowell B, Gertz B, Jiang MS, Sebald SM, Matzuk M, Li E, Liang LF, Quattlebaum E, Stotish RL, Wolfman NM (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci USA 102(50):18117–18122. doi:10.1073/pnas.0505996102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sepulveda PV, Lamon S, Hagg A, Thomson RE, Winbanks CE, Qian H, Bruce CR, Russell AP, Gregorevic P (2015) Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Sci Rep 5:17535. doi:10.1038/srep17535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P (2011) Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology 152(1):164–171. doi:10.1210/en.2010-0868

    Article  CAS  PubMed  Google Scholar 

  24. Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y, Walsh K (2008) Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 283(47):32802–32811. doi:10.1074/jbc.M803440200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eijken M, Swagemakers S, Koedam M, Steenbergen C, Derkx P, Uitterlinden AG, van der Spek PJ, Visser JA, de Jong FH, Pols HA, van Leeuwen JP (2007) The activin A-follistatin system: potent regulator of human extracellular matrix mineralization. FASEB J 21(11):2949–2960. doi:10.1096/fj.07-8080com

    Article  PubMed  Google Scholar 

  26. Kanzleiter T, Rath M, Gorgens SW, Jensen J, Tangen DS, Kolnes AJ, Kolnes KJ, Lee S, Eckel J, Schurmann A, Eckardt K (2014) The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun 450(2):1089–1094. doi:10.1016/j.bbrc.2014.06.123

    Article  CAS  PubMed  Google Scholar 

  27. Miura T, Kishioka Y, Wakamatsu J, Hattori A, Hennebry A, Berry CJ, Sharma M, Kambadur R, Nishimura T (2006) Decorin binds myostatin and modulates its activity to muscle cells. Biochem Biophys Res Commun 340(2):675–680. doi:10.1016/j.bbrc.2005.12.060

    Article  CAS  PubMed  Google Scholar 

  28. Han XG, Wang DK, Gao F, Liu RH, Bi ZG (2015) Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues. Genet Mol Res 14(3):11063–11072. doi:10.4238/2015.September.21.19

    Article  CAS  PubMed  Google Scholar 

  29. Takeuchi Y, Kodama Y, Matsumoto T (1994) Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J Biol Chem 269(51):32634–32638

    CAS  PubMed  Google Scholar 

  30. Kristiansen OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54(Suppl 2):S114–S124

    Article  CAS  PubMed  Google Scholar 

  31. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund Pedersen B (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406. doi:10.1152/physrev.90100.2007

    Article  CAS  PubMed  Google Scholar 

  33. Croisier JL, Camus G, Venneman I, Deby-Dupont G, Juchmes-Ferir A, Lamy M, Crielaard JM, Deby C, Duchateau J (1999) Effects of training on exercise-induced muscle damage and interleukin 6 production. Muscle Nerve 22(2):208–212

    Article  CAS  PubMed  Google Scholar 

  34. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55(10):2688–2697. doi:10.2337/db05-1404

    Article  CAS  PubMed  Google Scholar 

  35. Pedersen BK, Steensberg A, Schjerling P (2001) Exercise and interleukin-6. Curr Opin Hematol 8(3):137–141

    Article  CAS  PubMed  Google Scholar 

  36. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AM, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17(11):1481–1489. doi:10.1038/nm.2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pedersen BK (2012) Muscular interleukin-6 and its role as an energy sensor. Med Sci Sports Exerc 44(3):392–396. doi:10.1249/MSS.0b013e31822f94ac

    Article  CAS  PubMed  Google Scholar 

  38. Heymann D, Rousselle AV (2000) gp130 Cytokine family and bone cells. Cytokine 12(10):1455–1468. doi:10.1006/cyto.2000.0747

    Article  CAS  PubMed  Google Scholar 

  39. Poli V, Balena R, Fattori E, Markatos A, Yamamoto M, Tanaka H, Ciliberto G, Rodan GA, Costantini F (1994) Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J 13(5):1189–1196

    CAS  PubMed  PubMed Central  Google Scholar 

  40. De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, Longo M, Vivarelli M, Muratori F, Berni S, Ballanti P, Ferrari S, Teti A (2006) Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 54(11):3551–3563. doi:10.1002/art.22175

    Article  PubMed  Google Scholar 

  41. Yokota K, Sato K, Miyazaki T, Kitaura H, Kayama H, Miyoshi F, Araki Y, Akiyama Y, Takeda K, Mimura T (2014) Combination of tumor necrosis factor alpha and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol 66(1):121–129. doi:10.1002/art.38218

    Article  CAS  PubMed  Google Scholar 

  42. Duplomb L, Baud’huin M, Charrier C, Berreur M, Trichet V, Blanchard F, Heymann D (2008) Interleukin-6 inhibits receptor activator of nuclear factor kappaB ligand-induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of Serine727 phosphorylation of signal transducer and activator of transcription 3. Endocrinology 149(7):3688–3697. doi:10.1210/en.2007-1719

    Article  CAS  PubMed  Google Scholar 

  43. Kusano K, Miyaura C, Inada M, Tamura T, Ito A, Nagase H, Kamoi K, Suda T (1998) Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139(3):1338–1345. doi:10.1210/endo.139.3.5818

    CAS  PubMed  Google Scholar 

  44. Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP (2007) Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41(6):928–936. doi:10.1016/j.bone.2007.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bakker AD, Kulkarni RN, Klein-Nulend J, Lems WF (2014) IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts. J Dent Res 93(4):394–399. doi:10.1177/0022034514522485

    Article  CAS  PubMed  Google Scholar 

  46. Rufo A, Del Fattore A, Capulli M, Carvello F, De Pasquale L, Ferrari S, Pierroz D, Morandi L, De Simone M, Rucci N, Bertini E, Bianchi ML, De Benedetti F, Teti A (2011) Mechanisms inducing low bone density in Duchenne muscular dystrophy in mice and humans. J Bone Miner Res 26(8):1891–1903. doi:10.1002/jbmr.410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haugen F, Norheim F, Lian H, Wensaas AJ, Dueland S, Berg O, Funderud A, Skalhegg BS, Raastad T, Drevon CA (2010) IL-7 is expressed and secreted by human skeletal muscle cells. Am J Physiol Cell Physiol 298(4):C807–c816. doi:10.1152/ajpcell.00094.2009

    Article  CAS  PubMed  Google Scholar 

  48. Ceredig R, Rolink AG (2012) The key role of IL-7 in lymphopoiesis. Semin Immunol 24(3):159–164. doi:10.1016/j.smim.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  49. Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R (2002) Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Investig 110(11):1643–1650. doi:10.1172/JCI15687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giri JG, Anderson DM, Kumaki S, Park LS, Grabstein KH, Cosman D (1995) IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J Leukoc Biol 57(5):763–766

    CAS  PubMed  Google Scholar 

  51. Giri JG, Kumaki S, Ahdieh M, Friend DJ, Loomis A, Shanebeck K, DuBose R, Cosman D, Park LS, Anderson DM (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14(15):3654–3663

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, Pilegaard H, Pedersen BK (2007) Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584(Pt 1):305–312. doi:10.1113/jphysiol.2007.139618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carbo N, Lopez-Soriano J, Costelli P, Busquets S, Alvarez B, Baccino FM, Quinn LS, Lopez-Soriano FJ, Argiles JM (2000) Interleukin-15 antagonizes muscle protein waste in tumour-bearing rats. Br J Cancer 83(4):526–531. doi:10.1054/bjoc.2000.1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argiles JM (2002) Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res 280(1):55–63

    Article  CAS  PubMed  Google Scholar 

  55. Djaafar S, Pierroz DD, Chicheportiche R, Zheng XX, Ferrari SL, Ferrari-Lacraz S (2010) Inhibition of T cell-dependent and RANKL-dependent osteoclastogenic processes associated with high levels of bone mass in interleukin-15 receptor-deficient mice. Arthritis Rheum 62(11):3300–3310. doi:10.1002/art.27645

    Article  CAS  PubMed  Google Scholar 

  56. Feng S, Madsen SH, Viller NN, Neutzsky-Wulff AV, Geisler C, Karlsson L, Soderstrom K (2015) Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology 145(3):367–379. doi:10.1111/imm.12449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamrick MW, McNeil PL, Patterson SL (2010) Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact 10(1):64–70

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Investig 110(6):771–781. doi:10.1172/JCI15463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F (2010) The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol 205(3):201–210. doi:10.1677/JOE-09-0431

    Article  CAS  PubMed  Google Scholar 

  60. Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17(11):1352–1365. doi:10.1101/gad.1089403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ambrogini E, Almeida M, Martin-Millan M, Paik JH, Depinho RA, Han L, Goellner J, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC (2010) FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab 11(2):136–146. doi:10.1016/j.cmet.2009.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16(1):3–34. doi:10.1210/edrv-16-1-3

    CAS  PubMed  Google Scholar 

  63. Safian D, Fuentes EN, Valdes JA, Molina A (2012) Dynamic transcriptional regulation of autocrine/paracrine igfbp1, 2, 3, 4, 5, and 6 in the skeletal muscle of the fine flounder during different nutritional statuses. J Endocrinol 214(1):95–108. doi:10.1530/JOE-12-0057

    Article  CAS  PubMed  Google Scholar 

  64. Jennische E, Hall CM (2000) Expression and localisation of IGF-binding protein mRNAs in regenerating rat skeletal muscle. APMIS 108(11):747–755

    Article  CAS  PubMed  Google Scholar 

  65. Lebrasseur NK, Achenbach SJ, Melton LJ 3rd, Amin S, Khosla S (2012) Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J Bone Miner Res 27(10):2159–2169. doi:10.1002/jbmr.1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rajaram S, Baylink DJ, Mohan S (1997) Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr Rev 18(6):801–831. doi:10.1210/edrv.18.6.0321

    CAS  PubMed  Google Scholar 

  67. Amin S, Riggs BL, Melton LJ 3rd, Achenbach SJ, Atkinson EJ, Khosla S (2007) High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J Bone Miner Res 22(6):799–807. doi:10.1359/jbmr.070306

    Article  CAS  PubMed  Google Scholar 

  68. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468. doi:10.1038/nature10777

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell metabolism 19(2):302–309. doi:10.1016/j.cmet.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  70. Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM, Conn CA, Trujillo KA (2014) Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab 16(8):711–718. doi:10.1111/dom.12268

    Article  CAS  PubMed  Google Scholar 

  71. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, Di Benedetto A, Brunetti G, Yuen T, Sun L, Reseland JE, Colucci S, New MI, Zaidi M, Cinti S, Grano M (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA 112(39):12157–12162. doi:10.1073/pnas.1516622112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Colaianni G, Cuscito C, Mongelli T, Oranger A, Mori G, Brunetti G, Colucci S, Cinti S, Grano M (2014) Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol 2014:902186. doi:10.1155/2014/902186

    Article  PubMed  PubMed Central  Google Scholar 

  73. Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L, Lee S, Brenmoehl J, Thomas S, Drevon CA, Erickson HP, Maak S (2015) Irisin - a myth rather than an exercise-inducible myokine. Sci Rep 5:8889. doi:10.1038/srep08889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP, Spiegelman BM (2015) Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 22(4):734–740. doi:10.1016/j.cmet.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chan CY, Masui O, Krakovska O, Belozerov VE, Voisin S, Ghanny S, Chen J, Moyez D, Zhu P, Evans KR, McDermott JC, Siu KW (2011) Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics 10 (5):M110 004804. doi:10.1074/mcp.M110.004804

  76. Chan CY, McDermott JC, Siu KW (2011) Secretome analysis of skeletal myogenesis using SILAC and shotgun proteomics. Int J Proteomics 2011:329467. doi:10.1155/2011/329467

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–527. doi:10.1038/ng1783

    Article  CAS  PubMed  Google Scholar 

  78. Tanaka K, Matsumoto E, Higashimaki Y, Katagiri T, Sugimoto T, Seino S, Kaji H (2012) Role of osteoglycin in the linkage between muscle and bone. J Biol Chem 287(15):11616–11628. doi:10.1074/jbc.M111.292193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97. doi:10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faculty Research Grant of Hong Kong Baptist University (FRG2/13-14/006), the Hong Kong General Research Fund (12136616, 12102914 and 478312), Interdisciplinary Research Matching Scheme (IRMS) of Hong Kong Baptist University (RC-IRMS/13-14/02 and RC-IRMS/13-14/03), the Research Committee of Hong Kong Baptist University (30-12-286, FRG2/14-15/021 and FRG2/12-13/027), the Science and Technology Innovation Commission of Shenzhen Municipality (SCM-2013-SZTIC-001), Natural Science Foundation Council (81272045, 81401833 and 81572195).

Conflict of interest

All the authors including Baosheng Guo, Zong-Kang Zhang, Chao Liang, Jie Li, Jin Liu, Aiping Lu, Bao-Ting Zhang and Ge Zhang declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiping Lu, Bao-Ting Zhang or Ge Zhang.

Additional information

Baosheng Guo and Zong-Kang Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Zhang, ZK., Liang, C. et al. Molecular Communication from Skeletal Muscle to Bone: A Review for Muscle-Derived Myokines Regulating Bone Metabolism. Calcif Tissue Int 100, 184–192 (2017). https://doi.org/10.1007/s00223-016-0209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0209-4

Keywords

Navigation