Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adipokines in inflammation and metabolic disease

Key Points

  • Adipose tissue functions as an energy-storage and endocrine organ, thereby coordinating energy supply and demand at the level of the whole organism.

  • Adipose tissue is comprised of distinct cell populations that are engaged in complex crosstalk pathways.

  • Obesity and inflammation can alter the metabolic status of adipose tissue depots. Highly inflamed, metabolically dysfunctional adipose tissue is characterized by macrophage infiltration, capillary rarefaction and adipocyte necrosis.

  • Adipokines and adipose tissue-derived factors carry out inter-tissue communication functions. Adipokines are mainly secreted by adipocytes, whereas adipose tissue-derived factors can be secreted by cells in addition to or other than adipocytes (for example, interleukin-6, which is secreted by both adipocytes and macrophages).

  • Inflammatory factors are secreted by metabolically dysfunctional adipocytes and innate immune cells that infiltrate obese adipose tissues.

  • Anti-inflammatory adipokines are secreted by metabolically normal adipocytes to attenuate inflammation and coordinate fuel use by metabolically active tissues.

Abstract

The worldwide epidemic of obesity has brought considerable attention to research aimed at understanding the biology of adipocytes (fat cells) and the events occurring in adipose tissue (fat) and in the bodies of obese individuals. Accumulating evidence indicates that obesity causes chronic low-grade inflammation and that this contributes to systemic metabolic dysfunction that is associated with obesity-linked disorders. Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, known as adipose-derived secreted factors or adipokines, that have pro-inflammatory or anti-inflammatory activities. Dysregulated production or secretion of these adipokines owing to adipose tissue dysfunction can contribute to the pathogenesis of obesity-linked complications. In this Review, we focus on the role of adipokines in inflammatory responses and discuss their potential as regulators of metabolic function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adipose tissue depots.
Figure 2: Components of adipose tissue.
Figure 3: Phenotypic modulation of adipose tissue.

Similar content being viewed by others

References

  1. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  2. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ouchi, N., Kihara, S., Funahashi, T., Matsuzawa, Y. & Walsh, K. Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol. 14, 561–566 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 282, 2131–2135 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Esposito, K. et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289, 1799–1804 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Samaras, K., Botelho, N. K., Chisholm, D. J. & Lord, R. V. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity 18, 884–889 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Fried, S. K., Bunkin, D. A. & Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850 (1998).

    CAS  PubMed  Google Scholar 

  10. Chatterjee, T. K. et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ. Res. 104, 541–549 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takaoka, M. et al. Periadventitial adipose tissue plays a critical role in vascular remodeling. Circ. Res. 105, 906–911 (2009). This study shows that periadventitial adipose tissue has a causal role in the pathogenesis of vascular disease under conditions of obesity.

    Article  CAS  PubMed  Google Scholar 

  12. Cook, K. S. et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237, 402–405 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993). This report shows for the first time that TNF acts as an adipokine that regulates obesity-linked insulin resistance.

    CAS  PubMed  Google Scholar 

  14. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994). This report identifies the gene encoding leptin and shows the role of leptin in regulation of feeding behaviour.

    Article  CAS  PubMed  Google Scholar 

  15. Shimomura, I. et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nature Med. 2, 800–803 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995). References 16–18 report the identification of adiponectin in humans and mice.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003). References 19 and 20 show that macrophage accumulation in fat tissue is important for systemic inflammation and insulin resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Bruun, J. M., Lihn, A. S., Pedersen, S. B. & Richelsen, B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90, 2282–2289 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell Biol. 29, 1575–1591 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Ouchi, N. et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329, 454–457 (2010). This study identified SFRP5 as an adipokine that suppresses WNT5a-mediated JNK activation and inflammation in adipose tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007). Using adiponectin-transgenic mice, this work shows that in addition to the quantity of adipose tissue, the 'quality' of adipocytes in the adipose tissue can have a profound effect on systemic metabolic function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Apovian, C. M. et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler. Thromb. Vasc. Biol. 28, 1654–1659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Murano, I. et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 49, 1562–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Pajvani, U. B. et al. Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nature Med. 11, 797–803 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007). This paper shows that obesity leads to a shift in adipose tissue macrophage polarization from an alternatively activated state to a classically activated state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  Google Scholar 

  34. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell. Metab. 7, 496–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Odegaard, J. I. & Chawla, A. Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 15 Jan 2010 [epub ahead of print].

  36. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med. 15, 930–939 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Med. 15, 921–929 (2009). References 36–38 demonstrate that subsets of T cells in adipose tissue affect obesity-linked metabolic dysfunction.

    Article  CAS  PubMed  Google Scholar 

  39. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. & Goldstein, J. L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santos-Alvarez, J., Goberna, R. & Sanchez-Margalet, V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell. Immunol. 194, 6–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kiguchi, N., Maeda, T., Kobayashi, Y., Fukazawa, Y. & Kishioka, S. Leptin enhances CC-chemokine ligand expression in cultured murine macrophage. Biochem. Biophys. Res. Commun. 384, 311–315 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Zarkesh-Esfahani, H. et al. Leptin indirectly activates human neutrophils via induction of TNF-α. J. Immunol. 172, 1809–1814 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Grunfeld, C. et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J. Clin. Invest. 97, 2152–2157 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Faggioni, R. et al. Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor α and IL-18. Proc. Natl Acad. Sci. USA 97, 2367–2372 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matarese, G. et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol. 166, 5909–5916 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001). This study identified resistin as a thiazolidinedione-regulated adipokine that mediates obesity-linked insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  51. Banerjee, R. R. et al. Regulation of fasted blood glucose by resistin. Science 303, 1195–1198 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Qi, Y. et al. Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes 55, 3083–3090 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Steppan, C. M., Wang, J., Whiteman, E. L., Birnbaum, M. J. & Lazar, M. A. Activation of SOCS-3 by resistin. Mol. Cell Biol. 25, 1569–1575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heilbronn, L. K. et al. Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J. Clin. Endocrinol. Metab. 89, 1844–1848 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, J. H. et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab. 88, 4848–4856 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Patel, S. D., Rajala, M. W., Rossetti, L., Scherer, P. E. & Shapiro, L. Disulfide-dependent multimeric assembly of resistin family hormones. Science 304, 1154–1158 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Savage, D. B. et al. Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-γ action in humans. Diabetes 50, 2199–2202 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Kaser, S. et al. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 309, 286–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Lehrke, M. et al. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med. 1, e45 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Qatanani, M., Szwergold, N. R., Greaves, D. R., Ahima, R. S. & Lazar, M. A. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J. Clin. Invest. 119, 531–539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bokarewa, M., Nagaev, I., Dahlberg, L., Smith, U. & Tarkowski, A. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 174, 5789–5795 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Verma, S. et al. Resistin promotes endothelial cell activation: further evidence of adipokine–endothelial interaction. Circulation 108, 736–740 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Kawanami, D. et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine–endothelial cell interactions. Biochem. Biophys. Res. Commun. 314, 415–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Quadro, L. et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 18, 4633–4644 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005). This study shows that RBP4 is upregulated in the fat of adipose-specific GLUT4-deficient mice and that RBP4 contributes to the pathogenesis of type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  66. Broch, M. et al. Macrophages are novel sites of expression and regulation of retinol binding protein-4 (RBP4). Physiol. Res. 59, 299–303 (2010).

    CAS  PubMed  Google Scholar 

  67. Ost, A. et al. Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J. 21, 3696–3704 (2007).

    Article  PubMed  Google Scholar 

  68. Graham, T. E. et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 354, 2552–2563 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Kloting, N. et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell. Metab. 6, 79–87 (2007).

    Article  PubMed  CAS  Google Scholar 

  70. Balagopal, P. et al. Reduction of elevated serum retinol binding protein in obese children by lifestyle intervention: association with subclinical inflammation. J. Clin. Endocrinol. Metab. 92, 1971–1974 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Akbay, E., Muslu, N., Nayir, E., Ozhan, O. & Kiykim, A. Serum retinol binding protein 4 level is related with renal functions in type 2 diabetes. J. Endocrinol. Invest. 33, 725–729 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Henze, A. et al. Evidence that kidney function but not type 2 diabetes determines retinol-binding protein 4 serum levels. Diabetes 57, 3323–3326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mody, N., Graham, T. E., Tsuji, Y., Yang, Q. & Kahn, B. B. Decreased clearance of serum retinol-binding protein and elevated levels of transthyretin in insulin-resistant ob/ob mice. Am. J. Physiol. Endocrinol. Metab. 294, E785–E793 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Yan, Q. W. et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56, 2533–2540 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, J. et al. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol. Endocrinol. 22, 1416–1426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cowland, J. B., Muta, T. & Borregaard, N. IL-1β-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IκB-ζ. J. Immunol. 176, 5559–5566 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Y. et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin. Chem. 53, 34–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Catalan, V. et al. Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. J. Mol. Med. 87, 803–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Law, I. K. et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 59, 872–882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo, H. et al. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 59, 1376–1385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tabata, M. et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell. Metab. 10, 178–188 (2009). This report identifies ANGPTL2 as an adipokine that promotes adipose tissue inflammation and obesity-linked insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  82. Hotamisligil, G. S., Budavari, A., Murray, D. & Spiegelman, B. M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-α. J. Clin. Invest. 94, 1543–1549 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Kern, P. A. et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Invest. 95, 2111–2119 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ziccardi, P. et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 105, 804–809 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Hivert, M. F. et al. Associations of adiponectin, resistin, and tumor necrosis factor-α with insulin resistance. J. Clin. Endocrinol. Metab. 93, 3165–3172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M. & Taylor, R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996).

    Article  PubMed  Google Scholar 

  89. Lo, J. et al. Effects of TNF-α neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 293, E102–E109 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Gonzalez-Gay, M. A. et al. Anti-tumor necrosis factor-α blockade improves insulin resistance in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 24, 83–86 (2006).

    CAS  PubMed  Google Scholar 

  91. Marra, M. et al. Effect of etanercept on insulin sensitivity in nine patients with psoriasis. Int. J. Immunopathol. Pharmacol. 20, 731–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Stanley, T. L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E146–E150 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Senn, J. J. et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 278, 13740–13746 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Kim, H. J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Matthews, V. B. et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53, 2431–2441 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mooney, R. A. Counterpoint: interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 816–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Pedersen, B. K. & Febbraio, M. A. Point: interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 814–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Wood, I. S., Wang, B., Jenkins, J. R. & Trayhurn, P. The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNFα in human adipocytes. Biochem. Biophys. Res. Commun. 337, 422–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Esposito, K. et al. Weight loss reduces interleukin-18 levels in obese women. J. Clin. Endocrinol. Metab. 87, 3864–3866 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Mallat, Z. et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104, 1598–1603 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Tan, H. W. et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis 208, 350–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Elhage, R. et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res. 59, 234–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Netea, M. G. et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nature Med. 12, 650–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006). This report shows that an increase in adipose tissue CCL2 contributes to macrophage accumulation in adipose tissue and obesity-related metabolic dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sartipy, P. & Loskutoff, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 100, 7265–7270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D. & Heinecke, J. W. Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue. Diabetes 57, 1254–1261 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Tamura, Y. et al. Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice. Arterioscler. Thromb. Vasc. Biol. 28, 2195–2201 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Sarafi, M. N., Garcia-Zepeda, E. A., MacLean, J. A., Charo, I. F. & Luster, A. D. Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J. Exp. Med. 185, 99–109 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chavey, C. et al. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell. Metab. 9, 339–349 (2009). This report demonstrates that CXCL5 acts as an adipokine that causes obesity-induced insulin resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Samal, B. et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell Biol. 14, 1431–1437 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Revollo, J. R. et al. Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell. Metab. 6, 363–375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fukuhara, A. et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307, 426–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Haider, D. G. et al. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J. Clin. Endocrinol. Metab. 91, 1578–1581 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. El-Mesallamy, H. O., Kassem, D. H., El-Demerdash, E. & Amin, A. I. Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus. Metabolism 60, 63–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Moschen, A. R. et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 178, 1748–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Oki, K., Yamane, K., Kamei, N., Nojima, H. & Kohno, N. Circulating visfatin level is correlated with inflammation, but not with insulin resistance. Clin. Endocrinol. 67, 796–800 (2007).

    Article  CAS  Google Scholar 

  119. Ryo, M. et al. Adiponectin as a biomarker of the metabolic syndrome. Circ. J. 68, 975–981 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Li, S., Shin, H. J., Ding, E. L. & van Dam, R. M. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302, 179–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Fruebis, J. et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Med. 8, 731–737 (2002). This study shows that adiponectin deficiency contributes to the development of diet-induced insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  124. Nawrocki, A. R. et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem. 281, 2654–2660 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Tomas, E. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA 99, 16309–16313 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Med. 8, 1288–1295 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Med. 13, 332–339 (2007). This study reports the molecular cloning and characterization of adiponectin receptors 1 and 2.

    Article  CAS  PubMed  Google Scholar 

  129. Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464, 1313–1319 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Bjursell, M. et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 56, 583–593 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, Y. et al. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes. Endocrinology 148, 683–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Ouchi, N. et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107, 671–674 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Xu, A. et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 112, 91–100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ouchi, N. et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103, 1057–1063 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Yokota, T. et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96, 1723–1732 (2000).

    CAS  PubMed  Google Scholar 

  136. Yamaguchi, N. et al. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett. 579, 6821–6826 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Kumada, M. et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 109, 2046–2049 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Ohashi, K. et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Takemura, Y. et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J. Clin. Invest. 117, 375–386 (2007). This study shows that adiponectin promotes the clearance of apoptotic cells by macrophages, thereby modulating inflammatory responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  141. Fantuzzi, G. Adiponectin and inflammation: consensus and controversy. J. Allergy Clin. Immunol. 121, 326–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Aprahamian, T. et al. The peroxisome proliferator-activated receptor γ agonist rosiglitazone ameliorates murine lupus by induction of adiponectin. J. Immunol. 182, 340–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell. Metab. 6, 386–397 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Vallerie, S. N., Furuhashi, M., Fucho, R. & Hotamisligil, G. S. A predominant role for parenchymal c-Jun amino terminal kinase (JNK) in the regulation of systemic insulin sensitivity. PLoS ONE 3, e3151 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  145. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ye, J., Gao, Z., Yin, J. & He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–E1128 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Rupnick, M. A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl Acad. Sci. USA 99, 10730–10735 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nishimura, S. et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 56, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Sattar, N. et al. Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation 114, 623–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Iwashima, Y. et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 43, 1318–1323 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Hong, S. J., Park, C. G., Seo, H. S., Oh, D. J. & Ro, Y. M. Associations among plasma adiponectin, hypertension, left ventricular diastolic function and left ventricular mass index. Blood Press 13, 236–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Pischon, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291, 1730–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Ouchi, N. et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100, 2473–2476 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Kobashi, C. et al. Adiponectin inhibits endothelial synthesis of interleukin-8. Circ. Res. 97, 1245–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Ouchi, N. et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 102, 1296–1301 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Okamoto, Y. et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106, 2767–2770 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Yamauchi, T. et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J. Biol. Chem. 278, 2461–2468 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Okamoto, Y. et al. Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ. Res. 102, 218–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Nawrocki, A. R. et al. Lack of association between adiponectin levels and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 30, 1159–1165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ouchi, N. et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279, 1304–1309 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, H., Montagnani, M., Funahashi, T., Shimomura, I. & Quon, M. J. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem. 278, 45021–45026 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Kobayashi, H. et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 94, e27–e31 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, R. et al. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am. J. Physiol. Endocrinol. Metab. 293, E1703–E1708 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Ohashi, K. et al. Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension 47, 1108–1116 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Nishimura, M. et al. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 117, 216–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Shibata, R. et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling. J. Biol. Chem. 279, 28670–28674 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Kondo, M. et al. Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J. Biol. Chem. 284, 1718–1724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ohashi, K. et al. Adiponectin promotes revascularization of ischemic muscle through a cyclooxygenase 2-dependent mechanism. Mol. Cell Biol. 29, 3487–3499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Shibata, R. et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nature Med. 10, 1384–1389 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Liao, Y. et al. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc. Res. 67, 705–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Shibata, R. et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J. Mol. Cell Cardiol. 42, 1065–1074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sam, F. et al. Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. Endocrinology 151, 322–331 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Denzel, M. S. et al. Adiponectin deficiency limits tumor vascularization in the MMTV-PyV-mT mouse model of mammary cancer. Clin. Cancer Res. 15, 3256–3264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Denzel, M. S. et al. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest. 120, 4342–4352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Summer, R. et al. Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L1035–L1042 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Summer, R. et al. Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L432–L438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nakagawa, Y., Kishida, K., Kihara, S., Funahashi, T. & Shimomura, I. Adiponectin ameliorates hypoxia-induced pulmonary arterial remodeling. Biochem. Biophys. Res. Commun. 382, 183–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Shore, S. A., Terry, R. D., Flynt, L., Xu, A. & Hug, C. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immunol. 118, 389–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Miller, M., Cho, J. Y., Pham, A., Ramsdell, J. & Broide, D. H. Adiponectin and functional adiponectin receptor 1 are expressed by airway epithelial cells in chronic obstructive pulmonary disease. J. Immunol. 182, 684–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Zhu, M. et al. Impact of adiponectin deficiency on pulmonary responses to acute ozone exposure in mice. Am. J. Respir. Cell. Mol. Biol. 43, 487–497 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Walkey, A. J. et al. Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. Crit. Care Med. 38, 2329–2334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are funded by US National Institutes of Health grants (AG34972, HL86785, AG15052 and HL81587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Walsh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Insulin resistance

A condition characterized by the inability of cells (in the muscle, liver and fat) to respond appropriately to endogenous insulin, resulting in increased blood glucose levels.

Crown-like structure

An aggregation of single or fused macrophages (also referred to as multinucleated giant cells) around a single adipocyte in adipose tissue. These structures are typically associated with obesity, adipose tissue dysfunction and chronic inflammation.

M1 or 'classically activated' macrophage

A macrophage that is activated by Toll-like receptor ligands (such as lipopolysaccharide) and interferon-γ, and that expresses inducible nitric oxide synthase and nitric oxide, as well as other pro-inflammatory factors.

M2 or 'alternatively activated' macrophage

A macrophage that is stimulated by interleukin-4 (IL-4) or IL-13, and that expresses arginase 1, the mannose receptor CD206 and the IL-4 receptor α-chain.

The metabolic syndrome

A disorder characterized by the presence of at least three of the following features: large waist circumference (men: ≥40 inches; women: ≥35 inches), high levels of circulating triglycerides (≥150 mg dl−1), low levels of high-density lipoprotein (men: <40 mg dl−1; women: <50 mg dl−1), high fasting blood glucose (100 mg dl−1) and high blood pressure (≥130/85 mm Hg). Together, these conditions increase the risk of heart disease, stroke and type 2 diabetes.

Stromal vascular fraction

Non-adipocyte components of adipose tissue, including monocytes, macrophages, vascular cells, pre-adipocytes, T cells and mesenchymal stem cells.

Foam cell

A macrophage in the arterial wall that ingests oxidized low-density lipoprotein and assumes a foamy appearance. These cells secrete various substances involved in atherosclerotic plaque growth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouchi, N., Parker, J., Lugus, J. et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11, 85–97 (2011). https://doi.org/10.1038/nri2921

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing