Skip to main content

Advertisement

Log in

Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glycomic analysis is the comprehensive determination of glycan (oligosaccharide) structures with quantitative information in a biological sample. Rapid-throughput glycomics is complicated due to the lack of a template, which has greatly facilitated analysis in the field of proteomics. Furthermore, the large similarities in structures make fragmentation spectra (as obtained in electron impact ionization and tandem mass spectrometry) less definitive for identification as it has been in metabolomics. In this study, we develop a concept of rapid-throughput glycomics on human milk oligosaccharides, which have proven to be an important bioactive component of breast milk, providing the infant with protection against pathogenic infection and supporting the establishment of a healthy microbiota. To better understand the relationship between diverse oligosaccharides structures and their biological function as anti-pathogenic and prebiotic compounds, large human studies are needed, which necessitate rapid- to high-throughput analytical platforms. Herein, a complete glycomics methodology is presented, evaluating the most effective human milk oligosaccharide (HMO) extraction protocols, the linearity and reproducibility of the nano-liquid chromatography chip time-of-flight mass spectrometry (nano-LC chip-TOF MS) method, and the efficacy of newly developed, in-house software for chromatographic peak alignment that allows for rapid data analysis. High instrument stability and retention time reproducibility, together with the successful automated alignment of hundreds of features in hundreds of milk samples, allow for the use of an HMO library for rapid assignment of fully annotated structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22(9):1147–1162. doi:10.1093/glycob/cws074

    Article  CAS  Google Scholar 

  2. Bode L, Kuhn L, Kim H-Y, Hsiao L, Nissan C, Sinkala M, Kankasa C, Mwiya M, Thea DM, Aldrovandi GM (2012) Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding. Am J Clin Nutr 96(4):831–839. doi:10.3945/ajcn.112.039503

    Article  CAS  Google Scholar 

  3. Kunz C, Rudloff S, Baier W, Klein N, Strobel S (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20(1):699–722. doi:10.1146/annurev.nutr.20.1.699

    Article  CAS  Google Scholar 

  4. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS (2005) Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 135(5):1304–1307

    CAS  Google Scholar 

  5. Newburg DS, Ruiz-Palacios GM, Morrow AL (2005) Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 25(1):37–58. doi:10.1146/annurev.nutr.25.050304.092553

    Article  CAS  Google Scholar 

  6. Hua S, Lebrilla C, An HJ (2011) Application of nano-LC-based glycomics towards biomarker discovery. Bioanalysis 3(22):2573–2585. doi:10.4155/bio.11.263

    Article  CAS  Google Scholar 

  7. Costello CE, Contado-Miller JM, Cipollo JF (2007) A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 18(10):1799–1812. doi:10.1016/j.jasms.2007.07.016

    Article  CAS  Google Scholar 

  8. Erney RM, Malone WT, Skelding MB, Marcon AA, Kleman-Leyer KM, O’Ryan ML, Ruiz-Palacios G, Hilty MD, Pickering LK, Prieto PA (2000) Variability of human milk neutral oligosaccharides in a diverse population. J Pediatr Gastroenterol Nutr 30(2):181–192

    Article  CAS  Google Scholar 

  9. Leo F, Asakuma S, Nakamura T, Fukuda K, Senda A, Urashima T (2009) Improved determination of milk oligosaccharides using a single derivatization with anthranilic acid and separation by reversed-phase high-performance liquid chromatography. J Chromatogr A 1216(9):1520–1523. doi:10.1016/j.chroma.2009.01.015

    Article  CAS  Google Scholar 

  10. Thurl S, Henker J, Siegel M, Tovar K, Sawatzki G (1997) Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj J 14(7):795–799. doi:10.1023/A:1018529703106

    Article  CAS  Google Scholar 

  11. De Leoz M, Wu S, Strum J, Niñonuevo M, Gaerlan S, Mirmiran M, German JB, Mills D, Lebrilla C, Underwood M (2013) A quantitative and comprehensive method to analyze human milk oligosaccharide structures in the urine and feces of infants. Anal Bioanal Chem 405(12):4089–4105. doi:10.1007/s00216-013-6817-1

    Article  Google Scholar 

  12. Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, German JB, Freeman SL, Killeen K, Grimm R, Lebrilla CB (2006) A strategy for annotating the human milk glycome. J Agric Food Chem 54(20):7471–7480. doi:10.1021/jf0615810

    Article  CAS  Google Scholar 

  13. Strum JS, Kim J, Wu S, De Leoz MLA, Peacock K, Grimm R, German JB, Mills DA, Lebrilla CB (2012) Identification and accurate quantitation of biological oligosaccharide mixtures. Anal Chem 84(18):7793–7801. doi:10.1021/ac301128s

    Article  CAS  Google Scholar 

  14. Wu S, Grimm R, German JB, Lebrilla CB (2010) Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res 10(2):856–868. doi:10.1021/pr101006u

    Article  CAS  Google Scholar 

  15. Bao Y, Chen C, Newburg DS (2013) Quantification of neutral human milk oligosaccharides by graphitic carbon high-performance liquid chromatography with tandem mass spectrometry. Anal Biochem 433(1):28–35. doi:10.1016/j.ab.2012.10.003

    Article  CAS  Google Scholar 

  16. Kottler R, Mank M, Hennig R, Müller-Werner B, Stahl B, Reichl U, Rapp E (2013) Development of a high-throughput glycoanalysis method for the characterization of oligosaccharides in human milk utilizing multiplexed capillary gel electrophoresis with laser-induced fluorescence detection. Electrophoresis 34(16):2323–2336. doi:10.1002/elps.201300016

    Article  CAS  Google Scholar 

  17. Blank D, Gebhardt S, Maass K, Lochnit G, Dotz V, Blank J, Geyer R, Kunz C (2011) High-throughput mass finger printing and Lewis blood group assignment of human milk oligosaccharides. Anal Bioanal Chem 401(8):2495–2510. doi:10.1007/s00216-011-5349-9

    Article  CAS  Google Scholar 

  18. Wu S, Tao N, German JB, Grimm R, Lebrilla CB (2010) Development of an annotated library of neutral human milk oligosaccharides. J Proteome Res 9(8):4138–4151. doi:10.1021/pr100362f

    Article  CAS  Google Scholar 

  19. Aldredge D, An HJ, Tang N, Waddell K, Lebrilla CB (2012) Annotation of a serum N-glycan library for rapid identification of structures. J Proteome Res 11(3):1958–1968. doi:10.1021/pr2011439

    Article  CAS  Google Scholar 

  20. Hua S, An HJ, Ozcan S, Ro GS, Soares S, DeVere-White R, Lebrilla CB (2011) Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 136(18):3663–3671. doi:10.1039/C1AN15093F

    Article  CAS  Google Scholar 

  21. Jones E, Oliphant T, Peterson P (2001) Scipy: open source scientific tools for Python. http://www.scipy.org. Accessed 07 Jan 2014

  22. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95

    Article  Google Scholar 

  23. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787. doi:10.1021/ac051437y

    Article  CAS  Google Scholar 

  24. Ruhaak LR, Taylor S, Miyamoto S, Kelly K, Leiserowitz G, Gandara D, Lebrilla C, Kim K (2013) Chip-based nLC-TOF-MS is a highly stable technology for large-scale high-throughput analyses. Anal Bioanal Chem 405(14):4953–4958. doi:10.1007/s00216-013-6908-z

    Article  CAS  Google Scholar 

  25. Tao N, Wu S, Kim J, An HJ, Hinde K, Power ML, Gagneux P, German JB, Lebrilla CB (2011) Evolutionary glycomics: characterization of milk oligosaccharides in primates. J Proteome Res 10(4):1548–1557. doi:10.1021/pr1009367

    Article  CAS  Google Scholar 

  26. Totten SM, Zivkovic AM, Wu S, Ngyuen U, Freeman SL, Ruhaak LR, Darboe MK, German JB, Prentice AM, Lebrilla CB (2012) Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J Proteome Res 11(12):6124–6133. doi:10.1021/pr300769g

    CAS  Google Scholar 

Download references

Acknowledgments

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Research reported in this publication was supported by the National Institute of Child Health and Human Development, National Institute of General Medicine, and National Center of Complementary and Alternative Medicine of the National Institutes of Health under award numbers R01HD061923, R01GM049077, R01 AT007079, and 1U24DK097154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlito B. Lebrilla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Totten, S.M., Wu, L.D., Parker, E.A. et al. Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies. Anal Bioanal Chem 406, 7925–7935 (2014). https://doi.org/10.1007/s00216-014-8261-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8261-2

Keywords

Navigation