Skip to main content
Log in

Optimization of malaria detection based on third harmonic generation imaging of hemozoin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The pigment hemozoin is a natural by-product of the metabolism of hemoglobin by the parasites which cause malaria. Previously, hemozoin was demonstrated to have a very high nonlinear optical response enabling third harmonic generation (THG) imaging. In this study, we present a complete characterization of the nonlinear THG response of natural hemozoin in malaria-infected red blood cells, as well as in pure isostructural synthesized hematin anhydride, in order to determine optimal imaging parameters for detection. Our study demonstrates the wavelength range for optimal pulsed femtosecond laser excitation of THG from hemozoin crystals. In addition, we show the hemozoin crystal detection as a function of crystal size, incident laser power, and the emission response of the hemozoin crystals to different incident laser polarization states. Our systematic measurements of the nonlinear optical response from hemozoin establish detection limits, which are essential for the optimal design of malaria detection technologies that exploit the THG response of hemozoin.

Combined overlay image of THG (bright crystals in blue, one scan per frame) and TP autofluorescence (oval cells in red, average of 15 sequential frame scans) of natural hemozoin crystals and red blood cells (infected with FCR-3 Plasmodium falciparum), respectively, collected at the laser excitation wavelength of 1170 nm with 100 mW average incident power and pixel dwell time of 5 μs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. The World Malaria Report (2011) World Health Organization, Geneva, Switzerland. http://www.who.int/malaria/world_malaria_report_2011/en/index.html. Accessed 13 Dec 2011

  2. Schwarzer E, Bellomo G, Giribaldi G, Ulliers D, Arese P (2001) Phagocytosis of malarial pigment haemozoin by human monocytes: a confocal microscopy study. Parasitology 123:125–131

    Article  CAS  Google Scholar 

  3. Tappel AL (1953) The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds. Arch Biochem Biophys 44:378–395

    Article  CAS  Google Scholar 

  4. Hanscheid T (1999) Diagnosis of malaria: a review of alternatives to conventional microscopy. Clin Lab Haematol 21:235–245

    Article  CAS  Google Scholar 

  5. Lema OE, Carter JY, Nagelkerke N, Wangai MW, Kitenge P, Gikunda SM, Arube PA, Munafu CG, Materu SF, Adhiambo CA, Mukunza HK (1999) Comparison of five methods of malaria detection in the outpatient setting. AmJTrop Med Hyg 60:177–182

    CAS  Google Scholar 

  6. Notomi T, Yokayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63(i)–e63(vii)

    Article  Google Scholar 

  7. Fawzi ZO, Fakhro NA, Nabhan RA, Alloueche A, Scott CS (2003) Differences in automated depolarization patterns of Plasmodium falciparum and P. vivax malaria infections defined by the Cell-Dyn CD4000 haematology analyser. Trans R Soc Trop Med Hyg 97:71–79

    Article  Google Scholar 

  8. Bellemare MJ, Bohle DS, Brosseau CN, Georges E, Godbout M, Kelly J, Leimanis ML, Leonelli R, Olivier M, Smilkstein M (2009) Autofluorescence of condensed heme aggregates in malaria pigment and its synthetic equivalent hematin anhydride (β-hematin). J Phys Chem B 113:8391–8401

    Article  CAS  Google Scholar 

  9. Mauritz JMA, Tiffert T, Seear R, Lautenschläger F, Esposito A, Lew VL, Guck J, Kaminskia CF (2010) Detection of Plasmodium falciparum-infected red blood cells by optical stretching. J Bio Opt Lett 15:030517(1)–030517(3)

    Google Scholar 

  10. Sharma MK, Rao VK, Merwyn S, Agarwal GS, Upadhyay S, Vijayaraghavan R (2011) A novel piezoelectric immunosensor for the detection of malarial Plasmodium falciparum histidine rich protein-2 antigen. Talanta 85:1812–1817

    Article  CAS  Google Scholar 

  11. Belisle JM, Costantino S, Leimanis ML, Bellemare MJ, Bohle DS, Georges E, Wiseman PW (2008) Sensitive detection of malaria infection by third harmonic generation imaging. Biophys Letts 94:L26–L28

    CAS  Google Scholar 

  12. Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70:922–924

    Article  CAS  Google Scholar 

  13. Lippitz M, van Dijk MA, Orrit M (2005) Third-harmonic generation from single gold nanoparticles. Nano Letts 5:799–802

    Article  CAS  Google Scholar 

  14. Squier JA, Müller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt Exp 3:315–324

    Article  CAS  Google Scholar 

  15. Millard AC, Wiseman PW, Fittinghoff DN, Wilson KR, Squier JA, Muller M (1999) Third-harmonic generation microscopy by use of a compact femtosecond fiber laser source. Appl Opt 38:7393–7397

    Article  CAS  Google Scholar 

  16. Barzda V, Greenhalgh C, Aus der Au J, Elmore S, van Beek J, Squier J (2005) Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy. Opt Exp 13:8263–8276

    Article  Google Scholar 

  17. Debarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53

    Article  CAS  Google Scholar 

  18. Farrar MJ, Wise FW, Fetcho JR, Schaffer CB (2011) In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy. Biophys J 100:1362–1371

    Article  CAS  Google Scholar 

  19. Belisle M (2006) Design and assembly of a multimodal nonlinear laser scanning microscope. M.Sc. Thesis, McGill University, Montreal, Canada, System Number: 002602075

  20. Bohle DS, Kosar AD, Stephens PW (2002) Phase homogeneity and crystal morphology of the malaria pigment beta-hematin. Acta Crystallogr D D58:1752–1756

    Article  CAS  Google Scholar 

  21. Kapishnikov S, Berthing T, Hviid L, Dierolf M, Menzel A, Pfeiffer F, Als-Nielsen J, Leiserowitz L (2012) Aligned hemozoin crystals in curved clusters in malaria red blood cells revealed by nanoprobe X-ray Fe fluorescence and diffraction. Proc Nat Acd Sci 109:11184–11187

    Article  CAS  Google Scholar 

  22. Schaller RD, Johnson JC, Saykally RJ (2000) Nonlinear chemical imaging microscopy: near-field third harmonic generation imaging of human red blood cells. Anal Chem 72:5361–5364

    Article  CAS  Google Scholar 

  23. Wood BR, Langford SJ, Cooke BM, Lim J, Glenister FK, Duriska M, Unthank JK, McNaughton D (2004) Resonance Raman spectroscopy reveals new insight into the electronic structure of β-hematin and malaria pigment. J Am Chem Soc 126:9233–9239

    Article  CAS  Google Scholar 

  24. Zabotnov SV, Fedotov AB, Konorov SO, Veselova TV, Smirnova IE, Kashkarov PK, Zheltikov AM (2004) Effective-medium-controlled third-harmonic generation in lamellar-nonuniform porous glass. Opt Commun 229:397–402

    Article  CAS  Google Scholar 

  25. Lorenc D, Bugar I, Uherek F, Szpulak M, Urbanczyk W, Zheltikov AM (2007) Axial spectral scans of polarization dependent third-harmonic generation in a multimode photonic crystal fiber. J Eur Opt Soc 2:07001(1)–07001(5)

    Article  Google Scholar 

  26. Spencer TL, Cisek R, Barzda V, Philipose U, Ruda HE, Shik A (2009) Orientation dependent nonlinear optical effects in ZnSe nanowires. App Phys Letts 94:233119(1)–233119(3)

    Article  Google Scholar 

  27. Olivier N, Aptel F, Plamann K, Schanne-Klein M-C, Beaurepaire E (2010) Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea. Opt Exp 18:5028–5040

    Article  CAS  Google Scholar 

  28. Oron D, Tal E, Silberberg Y (2003) Depth-resolved multiphoton polarization microscopy by third-harmonic generation. Opt Lett 28:2315–2317

    Article  Google Scholar 

  29. Oron D, Yelin D, Tal E, Raz S, Fachima R, Silberberg Y (2004) Depth-resolved structural imaging by third-harmonic generation microscopy. J Struct Biol 147:3–11

    Article  Google Scholar 

  30. Pillai RS, Oh-e M, Yokoyama H, Brakenhoff GJ, Müller M (2006) Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy. Opt Exp 14:12976–12983

    Article  CAS  Google Scholar 

  31. Filippidis G, Troulinaki K, Fotakis C, Tavernarakis N (2009) In vivo polarization dependent second and third harmonic generation imaging of Caenorhabditis elegans pharyngeal muscles. Laser Phys 19:1475–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Natural Science Education Research Canada (NSERC) for an NSERC I2I grant and a Discovery grant to carry out these studies (PWW and EG). PWW also acknowledges funding from the Fessenden Chair in Science Innovation and the Canadian Foundation for Innovation. DSB acknowledges support from NSERC, the CRC, and the FQRNT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Wiseman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathy, U., Giguère-Bisson, M., Sangji, M.H. et al. Optimization of malaria detection based on third harmonic generation imaging of hemozoin. Anal Bioanal Chem 405, 5431–5440 (2013). https://doi.org/10.1007/s00216-013-6985-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6985-z

Keywords

Navigation