Skip to main content
Log in

Determination of a wide range of volatile and semivolatile organic compounds in snow by use of solid-phase micro-extraction (SPME)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quantification and transformation of organic compounds are pivotal in understanding atmospheric processes, because such compounds contribute to the oxidative capacity of the atmosphere and drive climate change. It has recently been recognized that chemical reactions in snow play a role in the production or destruction of photolabile volatile organic compounds (VOC). We present an environmentally friendly method for determination of VOC and semi-VOC in snow collected at three sites—remote, urban, and (sub-)arctic. A solid-phase micro-extraction (SPME) procedure was developed and (semi-)VOC were identified by gas chromatography with mass spectrometric detection (GC–MS). A broad spectrum of (semi-)VOC was found in snow samples, including aldehydes, and aromatic and halogenated compounds. Quantification was performed for 12 aromatic and/or oxygenated compounds frequently observed in snow by use of neat standard solutions. The concentrations detected were between 0.12 (styrene and ethylbenzene) and 316 μg L−1 (toluene) and limits of detection varied between 0.11 (styrene) and 1.93 μg L−1 (benzaldehyde). These results indicate that the SPME technique presented is a broad but selective, versatile, solvent-free, ecological, economical, and facile method of analysis for (semi-)VOC in natural snow samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hobbs PV (2000) Introduction to chemistry, Cambridge University Press, New York, pp 33–57

    Google Scholar 

  2. Dassau TM, Sumner AL, Koeniger SL, Shepson PB, Yang J, Honrath RE, Cullen NJ, Steffen, Jacobi HW, Frey M, Bales RC (2002) J Geophys Res [Atmos] 107:4394

    Article  Google Scholar 

  3. Thompson AM (1992) Science 256:1157–1165

    Article  CAS  Google Scholar 

  4. Mueller JF (1992) J Geophys Res 97:3787–3804

    Google Scholar 

  5. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel D, Hartley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scoles B, Steinbrecher R, Tallamraju R, Taylor J, Zimmermann PA (1995) J Geophys Res 100:8829–8873

    Article  Google Scholar 

  6. Helas G, Slannina J, Steinbrecher R (1997) Biogenic volatile organic compounds in the atmosphere. SPB Academic Publishing, Amsterdam, pp 115–143

    Google Scholar 

  7. Sumner AL, Shepson PB (1999) Nature 398:230–233

    Article  CAS  Google Scholar 

  8. Ariya PA, Hopper JF, Harris GW (1999) J Atmos Chem 34:55–64

    Article  CAS  Google Scholar 

  9. Shepson PB, Sirju A-P, Hopper JF, Barrie LA, Young V, Niki H, Dryfhout H (1996) J Geophys Res [Atmos] 101:21081–21090

    Article  CAS  Google Scholar 

  10. Franz TP, Eisenreich SJ (1998) Environ Sci Technol 32:1771–1778

    Article  CAS  Google Scholar 

  11. Murozumi M, Chow TJ, Patterson C (1969) Geochim Cosmochim Acta 33:1247–1294

    Article  CAS  Google Scholar 

  12. Neftel A (1996) In: Wolff EW, Bales RC (eds) Chemical exchange between the atmosphere and polar snow. Springer, Berlin Heidelberg New York, pp 45–70

    Google Scholar 

  13. Waddington ED, Cunningham J, Harder S (1996) In: Wolff EW, Bales RC (eds) Chemical exchange between the atmosphere and polar snow. Springer, Berlin Heidelberg New York, pp 403–452

    Google Scholar 

  14. Albert MR, Shultz EF (2002) Atmos Environ 36:2789–2797

    Article  CAS  Google Scholar 

  15. Pomeroy JW, Jones HG (1996) In: Wolff EW, Bales RC (eds) Chemical exchange between the atmosphere and polar snow. Springer, Berlin Heidelberg New York, pp 453–491

    Google Scholar 

  16. Roth CM, Goss K-U, Schnwarzenbach RP (2004) Env Sci Tech 38:4078–4084

    Article  CAS  Google Scholar 

  17. Hewitt CN, Sturges WT (1993) Global atmospheric chemical change. Elsevier Applied Science, New York, pp 217–254

    Google Scholar 

  18. Desideri P, Lepri L, Udisti R, Cecchini L, del Bubba M, Cini R, Stortini A (1998) Intern J Environ Anal Chem 71:331–351

    CAS  Google Scholar 

  19. Herbert BMJ, Halsall CJ, Fitzpatrick L, Villa S, Jones KC, Thomas GO (2004) Chemosphere 56:227–235

    Article  CAS  Google Scholar 

  20. Grollert C, Kasper A, Puxbaum H (1997) Intern J Environ Anal Chem 67:213–222

    Google Scholar 

  21. Belardi R, Pawliszyn J (1989) Water Pollut Res J Can 24:179–191

    CAS  Google Scholar 

  22. Pettersson J, Kloskowski A, Zaniol C, Roeraade J (2004) J Chromatogr A 1033:339–347

    Article  CAS  Google Scholar 

  23. Clement RE, Yang PW (2001) Ana Chem 73:2761–2790

    Article  CAS  Google Scholar 

  24. Lavagnini I, Favaro G, Magno F (2004) Rapid Commun Mass Spectrom 18:1383–1391

    Article  CAS  Google Scholar 

  25. Schmidt TC (2003) TrAC, Trends Anal Chem 22:776–784

    Article  CAS  Google Scholar 

  26. Lekkas T, Kostopoulou M, Petsas A, Vagi M, Golfinopoulos S, Stasinakis A, Thomaidis N, Pavlogeorgatos G, Kotrikla A, Gatidou G, Xylourgidis N, Kolokythas G, Makri C, Babos D, Lekkas DF, Nikolaou A (2003) J Environ Monit 5:593–597

    Article  CAS  Google Scholar 

  27. Hashimoto S, Tanaka T, Yamashita N, Maeda TJ (2001) Sep Sci 24:97–103

    Article  CAS  Google Scholar 

  28. Bocchini P, Andalo C, Bonfiglioli D, Galletti GC (1999) Rapid Commun Mass Spectrom 13:2133–2139

    Article  CAS  Google Scholar 

  29. Lacorte S, Viana P, Guillamon M, Tauler R, Vinhas T, Barceló D (2001) J Environ Monit 3:475–482

    Article  CAS  Google Scholar 

  30. Almeida CM, Boas LV (2004) J Environ Monit 6:80–88

    Article  CAS  Google Scholar 

  31. Wardencki W, Michulec M, Curyo JA (2004) Int J Food Sci Technol 39:703–717

    Article  CAS  Google Scholar 

  32. Serrano A, Gallego M (2004) J Chromatogr A 1045:181–188

    Article  CAS  Google Scholar 

  33. Chvilickova I, Kuban V (2004) Anal Bioanal Chem 378:150–158

    Article  CAS  Google Scholar 

  34. Tsai S-W, Chang C-M (2003) J Chromatogr A 1015:143–150

    Article  CAS  Google Scholar 

  35. Martinez E, Lacorte S, Llobeta I, Vianab P, Barcelo D (2002) J Chromatogr A 959:181–190

    Article  CAS  Google Scholar 

  36. Scheppers Wercinski A (1999) Solid-phase micro-extraction, a practical guide. Marcel Dekker, New York, Chapter 3

    Google Scholar 

  37. Calvert JG, Atkinson R, Becker KH, Kamens RM, Seinfeld JH, Wallington TJ, Yarwood G (2002) The Mechanisms of atmospheric oxidation of aromatic hydrocarbons. Oxford University Press, New York, Chapter 1

    Google Scholar 

  38. Yokouchi Y, Mukai H, Yamamoto H, Otsuki A, Saitoh C, Nojiri Y (1997) J Geophys Res [Atmos] 102:8805–8809

    Article  CAS  Google Scholar 

  39. Folkins I, Chatfield R (2000) J Geophys Res 105:11585–11599

    Article  CAS  Google Scholar 

  40. Pons B, Fernandez-Torroba MA, Ortiz G, Tena MT (2003) Int J Environ Anal Chem 83:495–506

    Article  CAS  Google Scholar 

  41. Buffle J, Horvai G (2000) Importance of in-situ measurements, in-situ monitoring of aquatic systems: chemical analysis and speciation, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. Chichester, New York, Chapter 1

    Google Scholar 

Download references

Acknowledgements

Financial support from the National Sciences and Engineering Research Council of Canada (NSERC), the Canadian Space Agency (CSA), and Environment Canada (EC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa A. Ariya.

Appendix Calibration plot for ethylbenzene (n=5, error bars represent ±3σ, r=0.9994)

Appendix Calibration plot for ethylbenzene (n=5, error bars represent ±3σ, r=0.9994)

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kos, G., Ariya, P.A. Determination of a wide range of volatile and semivolatile organic compounds in snow by use of solid-phase micro-extraction (SPME). Anal Bioanal Chem 385, 57–66 (2006). https://doi.org/10.1007/s00216-006-0333-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0333-5

Keywords

Navigation