Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Snowpack production of formaldehyde and its effect on the Arctic troposphere

Abstract

The oxidative capacity1 of the atmosphere determines the lifetime and ultimate fate of atmospheric trace species. It is controlled by the presence of highly reactive radicals, particularly OH· formed as a result of ozone photolysis. The dramatic depletion of ozone in Arctic surface air during polar sunrise2,3 therefore offers an opportunity to improve our understanding of the processes controlling ozone abundance and hence the oxidative capacity of the atmosphere. Ozone destruction is catalysed by bromine atoms4 and is terminated once bromine reacts with formaldehyde to form relatively inert hydrogen bromide, but neither the activation of bromine nor the contribution of formaldehyde are fully understood. Particularly troubling is the failure of current models5,6,7 to simulate the high formaldehyde concentrations7,8,9 in Arctic surface air. Here we report measurements in Arctic snow and near-surface air, which suggest that photochemical production at the air–snow interface accounts for the discrepancy between observed and predicted formaldehyde concentrations. The strength of this source is comparable to that of the dominant formaldehyde source in the free troposphere (the reaction between OH· and methane) and implies that formaldehyde photolysis canbe a dominant source of oxidizing free radicals in the lower polar troposphere. We expect that formaldehyde will also affect photochemistry at the snow surface to facilitate the release of bromine into the lower troposphere—the initial step in Arctic tropospheric ozone depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of gas-phase measurements.
Figure 2: Vertical HCHO concentration profiles.
Figure 3: Possible formaldehyde production mechanisms and photochemical reaction sequences occurring at the snow–air interface.

Similar content being viewed by others

References

  1. Thompson, A. M. The oxidizing capacity of the Earth's atmosphere: probable past and future changes. Science 256, 1157–1165 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bottenheim, J. W., Gallant, A. J. & Brice, K. A. Measurements of NOyspecies and O3at 82° N latitude. Geophys. Res. Lett. 13, 113–116 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Oltmans, S. J. & Komhyr, W. D. Surface ozone distributions and variations from 1973–1984 measurements at the NOAA Geophysical Monitoring for Climate Change Baseline observatories. J. Geophys. Res. D 91, 5229–5236 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J. & Rasmussen, R. A. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334, 138–141 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Sander, R., Vogt, R., Harris, G. W. & Crutzen, P. J. Modeling the chemistry of ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring. Tellus B 49, 522–532 (1997).

    Article  ADS  Google Scholar 

  6. Neftel, A., Bales, R. C. & Jacob, D. J. in Ice Core Studies of Global Biochemical Cycles (ed. Delmas, R.) (NATO ASI Ser. I, Springer, New York, (1995).

    Google Scholar 

  7. Shepson, P. B. et al. Sources and sinks of carbonyl compounds in the Arctic Ocean boundary layer: polar ice floe experiment. J. Geophys. Res. 101, 21081–21089 (1996).

    Article  ADS  CAS  Google Scholar 

  8. De Serves, C. Gas phase formaldehyde and peroxide measurements in the Arctic atmosphere. J. Geophys. Res. 99, 25391–25398 (1994).

    Article  ADS  Google Scholar 

  9. Fuhrer, K., Hutterli, M. & McConnell, J. R. in Chemical Exchange between the Atmosphere and Polar Snow (eds Wolff, E. & Bales, R.) (NATO ASI Ser. I, Springer, New York, (1996).

    Google Scholar 

  10. Fan, Q. & Dasgupta, P. K. Continuous automated determination of atmospheric formaldehyde at the parts per trillion level. Anal. Chem. 66, 551–556 (1994).

    Article  CAS  Google Scholar 

  11. Hopper, J. F. & Hart, W. R. Meterological aspects of the 1992 Polar Sunrise Experiment. J. Geophys. Res. 99, 25315–25328 (1994).

    Article  ADS  Google Scholar 

  12. McConnell, J. C. et al. Photochemical bromine production implicated in Arctic boundary layer ozone depletion. Nature 355, 150–152 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Honrath, R. E. & Jaffe, D. A. The seasonal cycle of nitrogen oxides in the Arctic troposphere at Barrow, Alaska. J. Geophys. Res. 97, 20615–20630 (1992).

    Article  ADS  Google Scholar 

  14. Beine, H. J. et al. NOxduring ozone depletion events in the Arctic troposphere at Ny-ålesund, Svalbard. Tellus B 49, 556–565 (1997).

    Article  ADS  Google Scholar 

  15. Staffelbach, T., Neftel, A., Stauffer, B. & Jacob, D. Arecord of the atmospheric methane sink for formaldehyde in polar ice cores. Nature 349, 603–605 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Dong, S. & Dasgupta, P. K. Solubility of gaseous formaldehyde in liquid water and generation of trace standard formaldehyde. Environ. Sci. Technol. 20, 637–640 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Conklin, M. H. & Bales, R. C. SO2uptake on ice spheres: Liquid nature of the ice-air interface. J. Geophys. Res. 98, 16851–16855 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Prinn, R. G. et al. Atmospheric trends and lifetime of CH3CCl3and global OH concentrations. Science 269, 187–192 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Vaghjiani, G. L. & Ravishankara, A. R. New measurement of the rate coefficient for the reaction of OH with methane. Nature 350, 406–409 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Muller, T., Bleiss, W., Martin, C. D., Rogaschewski, S. & Fuhr, G. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32 (1998).

    Article  Google Scholar 

  21. Stewart, W. D. P. (ed.) Algal Physiology and Biochemistry (Univ. California Press, Berkeley, (1974).

    Google Scholar 

  22. Qian, J.-G., Mopper, K. & Kieber, D. J. Photochemical production of the OH radical and formaldehyde in Antarctic waters. Antarctic J. R. 30, 141–143 (1995).

    Google Scholar 

  23. Impey, G. A., Shepson, P. B., Hastie, D. R. & Barrie, L. A. Measurements of photolyzable chlorine and bromine during the Polar Sunrise Experiment 1995. J. Geophys. Res. 102, 16005–16010 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Impey, G. A. et al. Measurements of photolyzable halogen comounds and bromine radicals during the Polar Sunrise Experiment 1997. J. Atmos. Chem.(in the press).

  25. Oum, K. W., Lakin, M. J., DeHaan, D. O., Brauers, T. & Finlayson-Pitts, B. J. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 279, 74–77 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Oum, K. W., Lakin, M. Y. & Finlayson-Pitts, B. J. Bromine activation in the troposphere by the dark reaction of O3with seawater ice. Geophys. Res. Lett. 25, 3923003926 (1998).

    Article  Google Scholar 

  27. Mopper, K. & Zhou, X. Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Science 250, 661–664 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Vaughan, P. P. & Blough, N. V. Photochemical formation of hydroxyl radical by constituents of natural waters. Envrion. Sci. Technol. 32, 2947–2953 (1998).

    Article  Google Scholar 

  29. Li, S.-M. & Winchester, J. W. Water soluble organic constituents in Arctic aerosols and snow pack. Geophys. Res. Lett. 20, 45–48 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Mozurkewich, M. Mechanism for the release of halogens from sea-salt particles by free radical reactions. J. Geophys. Res. 100, 14199–142107 (1995).

    Article  ADS  Google Scholar 

  31. Haan, D. & Raynaud, D. Ice core record of CO variations during the last two milennia: atmospheric implications and chemical interactions within the Greenland ice. Tellus B 50, 253–262 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Bottenheim, L. Barrie and P. Dasgupta for discussions; K. Anlauf for use of the Alert ozone data; and J. Deary, A. Gallant, Atmospheric Environment Service, the Canadian Forces, and the Department of National Defense, Canada, for technical and logistic support. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Shepson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumner, A., Shepson, P. Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 398, 230–233 (1999). https://doi.org/10.1038/18423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18423

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing