Skip to main content

Advertisement

Log in

Effects of time of feeding on psychostimulant reward, conditioned place preference, metabolic hormone levels, and nucleus accumbens biochemical measures in food-restricted rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic food restriction (FR) increases rewarding effects of abused drugs and persistence of a cocaine-conditioned place preference (CPP). When there is a single daily meal, circadian rhythms are correspondingly entrained, and pre- and postprandial periods are accompanied by different circulating levels of metabolic hormones that modulate brain dopamine function.

Objectives

The present study assessed whether rewarding effects of d-amphetamine, cocaine, and persistence of cocaine-CPP differ between FR subjects tested in the pre- and postprandial periods.

Materials and methods

Rats were stereotaxically implanted with intracerebral microinjection cannulae and an electrode in lateral hypothalamus. Rewarding effects of d-amphetamine and cocaine were assessed using electrical self-stimulation in rats tested 1–4 or 18–21 h after the daily meal. Nonimplanted subjects acquired a cocaine-CPP while ad libitum fed and then were switched to FR and tested for CPP at these same times.

Results

Rewarding effects of intranucleus accumbens (NAc) d-amphetamine, intraventricular cocaine, and persistence of cocaine-CPP did not differ between rats tested 18–21 h food-deprived, when ghrelin and insulin levels were at peak and nadir, respectively, and those tested 1–4 h after feeding. Rats that expressed a persistent CPP had elevated levels of p-ERK1, GluA1, and p-Ser845-GluA1 in NAc core, and the latter correlated with CPP expression.

Conclusions

Psychostimulant reward and persistence of CPP in FR rats are unaffected by time of testing relative to the daily meal. Further, NAc biochemical responses previously associated with enhanced drug responsiveness in FR rats are associated with persistent CPP expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrahamsen GC, Carr KD (1997) Effect of adrenalectomy on cocaine facilitation of lateral hypothalamic self-stimulation. Brain Res 755:156–161

    Article  PubMed  CAS  Google Scholar 

  • Ambroggi F, Turiault M, Milet A, Deroche-Gamonet V, Parnaudeau S, Balado E, Barik J, van der Veen R, Maroteaux G, Lemberger T, Schutz G, Lazar M, Marinelli M, Piazza PV, Tronche F (2009) Stress and addiction: glucocorticoid receptor in dopaminoceptive neurons facilitates cocaine seeking. Nat Neurosci 12:247–249

    Article  PubMed  CAS  Google Scholar 

  • Angeles-Castellanos M, Mendoza J, Escobar C (2007) Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience 144:344–355

    Article  PubMed  CAS  Google Scholar 

  • Austin SB, Gortmaker SL (2001) Dieting and smoking initiation in early adolescent girls and boys: a prospective study. Am J Public Health 91:446–450

    Article  PubMed  CAS  Google Scholar 

  • Baird TJ, Gauvin D (2000) Characterization of cocaine self-administration and pharmacokinetics as a function of time of day in the rat. Pharmacol Biochem Behav 65:289–299

    Article  PubMed  CAS  Google Scholar 

  • Barrot M, Marinelli M, Abrous DN, Rouge-Pont F, Le Moal M, Piazza PV (2000) The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent. Eur J Neurosci 12:973–979

    Article  PubMed  CAS  Google Scholar 

  • Bell SM, Stewart RB, Thompson SC, Meisch RA (1997) Food-deprivation increases cocaine-induced conditioned place preference and locomotor activity in rats. Psychopharmacology (Berl) 131:1–8

    Article  CAS  Google Scholar 

  • Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath TL, Abizaid A (2009) Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience 164:351–359

    Article  PubMed  CAS  Google Scholar 

  • Cabeza de Vaca S, Carr KD (1998) Food restriction enhances the central rewarding effect of abused drugs. J Neurosci 18:7502–7510

    PubMed  CAS  Google Scholar 

  • Carr KD (2007) Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav 91:459–472

    Article  PubMed  CAS  Google Scholar 

  • Carr KD (2011) Food scarcity, neuroadaptations, and the pathogenic potential of dieting in an unnatural ecology: binge eating and drug abuse. Physiol Behav 104:162–167

    Article  PubMed  CAS  Google Scholar 

  • Carr KD, Kim GY, Cabeza de Vaca S (2000) Chronic food restriction in rats augments the central rewarding effect of cocaine and the delta1 opioid agonist, DPDPE, but not the delta2 agonist, deltorphin-II. Psychopharmacology (Berl) 152:200–207

    Article  CAS  Google Scholar 

  • Carr KD, Tsimberg Y, Berman Y, Yamamoto N (2003) Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience 119:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Carr KD, Cabeza de Vaca S, Sun Y, Chau LS (2009) Reward-potentiating effects of D-1 dopamine receptor agonist and AMPAR GluR1 antagonist in nucleus accumbens shell and their modulation by food restriction. Psychopharmacology (Berl) 202:731–743

    Article  CAS  Google Scholar 

  • Carr KD, Chau LS, Cabeza de Vaca S, Gustafson K, Stouffer M, Tukey DS, Restituito S, Ziff EB (2010) AMPA receptor subunit GluR1 downstream of D-1 dopamine receptor stimulation in nucleus accumbens shell mediates increased drug reward magnitude in food-restricted rats. Neuroscience 165:1074–1086

    Article  PubMed  CAS  Google Scholar 

  • Carroll ME, Meisch RA (1984) Increased drug-reinforced behavior due to food-deprivation. Adv Behav Pharmacol 4:47–88

    CAS  Google Scholar 

  • Cheskin LJ, Hess JM, Henningfield J, Gorelick DA (2005) Calorie restriction increases cigarette use in adult smokers. Psychopharmacology (Berl) 179:430–436

    Article  CAS  Google Scholar 

  • Davidson AJ, Stephan FK (1999) Plasma glucagon, glucose, insulin, and motilin in rats anticipating daily meals. Physiol Behav 66:309–315

    Article  PubMed  CAS  Google Scholar 

  • Davis KW, Wellman PJ, Clifford PS (2007) Augmented cocaine conditioned place preference in rats pretreated with systemic ghrelin. Regul Pept 140:148–152

    Article  PubMed  CAS  Google Scholar 

  • Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ, Benoit SC (2008) Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 122:1257–1263

    Article  PubMed  Google Scholar 

  • Daws LC, Avison MJ, Robertson SD, Niswender KD, Galli A, Saunders C (2011) Insulin signaling and addiction. Neuropharmacology 61:1123–1128

    Google Scholar 

  • Deroche V, Marinelli M, Maccari S, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 15:7181–7188

    PubMed  CAS  Google Scholar 

  • Diaz-Munoz M, Vazquez-Martinez O, Aguilar-Roblero R, Escobar C (2000) Anticipatory changes in liver metabolism and entrainment of insulin, glucagon, and corticosterone in food-restricted rats. Am J Physiol Regul Integr Comp Physiol 279:R2048–R2056

    PubMed  CAS  Google Scholar 

  • Dickson SL, Egecioglu E, Landgren S, Skibicka KP, Engel JA, Jerlhag E (2011) The role of the central ghrelin system in reward from food and chemical drugs. Mol Cell Endocrinol 340:80–87

    Article  PubMed  CAS  Google Scholar 

  • Drazen DL, Vahl TP, D’Alessio DA, Seeley RJ, Woods SC (2006) Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology 147:23–30

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD, Heine M, Groc L, Lee MC, Choquet D (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54:447–460

    Article  PubMed  CAS  Google Scholar 

  • Escobar C, Diaz-Munoz M, Encinas F, Aguilar-Roblero R (1998) Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol 274:R1309–R1316

    PubMed  CAS  Google Scholar 

  • Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6:136–143

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SM, Fasano S, Yang P, Brambilla R, Robinson TE (2006) Knockout of ERK1 enhances cocaine-evoked immediate early gene expression and behavioral plasticity. Neuropsychopharmacology 31:2660–2668

    Article  PubMed  CAS  Google Scholar 

  • French SA, Perry CL, Leon GR, Fulkerson JA (1994) Weight concerns, dieting behavior, and smoking initiation among adolescents: a prospective study. Am J Public Health 84:1818–1820

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Neill D, Justice JB Jr (1996) Conditioned place preference and locomotor activation produced by injection of psychostimulants into ventral pallidum. Brain Res 707:64–74

    Article  PubMed  CAS  Google Scholar 

  • Groc L, Choquet D, Chaouloff F (2008) The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci 11:868–870

    Article  PubMed  CAS  Google Scholar 

  • Haberny SL, Berman Y, Meller E, Carr KD (2004) Chronic food restriction increases D-1 dopamine receptor agonist-induced phosphorylation of extracellular signal-regulated kinase 1/2 and cyclic AMP response element-binding protein in caudate-putamen and nucleus accumbens. Neuroscience 125:289–298

    Article  PubMed  CAS  Google Scholar 

  • He K, Song L, Cummings LW, Goldman J, Huganir RL, Lee HK (2009) Stabilization of Ca2 + −permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc Natl Acad Sci USA 106:20033–20038

    PubMed  CAS  Google Scholar 

  • Jerlhag E, Janson A, Waters S, Engel JA (2012) Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS One 7:e49557

    Article  PubMed  CAS  Google Scholar 

  • Krahn D, Kurth C, Demitrack M, Drewnowski A (1992) The relationship of dieting severity and bulimic behaviors to alcohol and other drug use in young women. J Subst Abuse 4:341–353

    Article  PubMed  CAS  Google Scholar 

  • Krieger DT (1974) Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology 95:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Krugers HJ, Hoogenraad CC, Groc L (2010) Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat Rev Neurosci 11:675–681

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zheng D, Peng XX, Cabeza de Vaca S, Carr KD (2011) Enhanced cocaine-conditioned place preference and associated brain regional levels of BDNF, p-ERK1/2 and p-Ser845-GluA1 in food-restricted rats. Brain Res 1400:31–41

    Article  PubMed  CAS  Google Scholar 

  • Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390

    Article  PubMed  CAS  Google Scholar 

  • Man HY, Sekine-Aizawa Y, Huganir RL (2007) Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc Natl Acad Sci USA 104:3579–3584

    Article  PubMed  Google Scholar 

  • Marinkovic P, Pesic V, Loncarevic N, Smiljanic K, Kanazir S, Ruzdijic S (2007) Behavioral and biochemical effects of various food-restriction regimens in the rats. Physiol Behav 92:492–499

    Article  PubMed  CAS  Google Scholar 

  • Mendoza J, Angeles-Castellanos M, Escobar C (2005) Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain. Neuroscience 133:293–303

    Article  PubMed  CAS  Google Scholar 

  • Miljic D, Pekic S, Djurovic, M, Doknic, M, Milic N, Casanueva FF Ghatei M, Popovic V (2006) Ghrelin has partial or no effect on appetite, growth hormone, prolactin, and cortisol release in patients with anorexia nervosa. J Clin Endocrinol Metab 91:1491–95

    Google Scholar 

  • Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104:535–545

    Article  PubMed  CAS  Google Scholar 

  • Oh MC, Derkach VA, Guire ES, Soderling TR (2006) Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 281:752–758

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Chau L, Liu S, Avshalumov MV, Rice ME, Carr KD (2011) A food restriction protocol that increases drug reward decreases tropomyosin receptor kinase B in the ventral tegmental area, with no effect on brain-derived neurotrophic factor or tropomyosin receptor kinase B protein levels in dopaminergic forebrain regions. Neuroscience 197:330–338

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic, San Diego

    Google Scholar 

  • Peng XX, Ziff EB, Carr KD (2011) Effects of food restriction and sucrose intake on synaptic delivery of AMPA receptors in nucleus accumbens. Synapse 65:1024–1031

    Google Scholar 

  • Pisetsky EM, Chao YM, Dierker LC, May AM, Striegel-Moore RH (2008) Disordered eating and substance use in high-school students: results from the Youth Risk Behavior Surveillance System. Int J Eat Disord 41:464–470

    Article  PubMed  Google Scholar 

  • Pothos EN, Creese I, Hoebel BG (1995) Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J Neurosci 15:6640–6650

    PubMed  CAS  Google Scholar 

  • Root TL, Pinheiro AP, Thornton L, Strober M, Fernandez-Aranda F, Brandt H, Crawford S, Fichter MM, Halmi KA, Johnson C, Kaplan AS, Klump KL, La Via M, Mitchell J, Woodside DB, Rotondo A, Berrettini WH, Kaye WH, Bulik CM (2010) Substance use disorders in women with anorexia nervosa. Int J Eat Disord 43:14–21

    PubMed  Google Scholar 

  • Rosse R, Deutsch S, Chilton M (2005) Cocaine addicts prone to cocaine-induced psychosis have lower body mass index than cocaine addicts resistant to cocaine-induced psychosis—implications for the cocaine model of psychosis proneness. Isr J Psychiatry Relat Sci 42:45–50

    PubMed  Google Scholar 

  • Seo DC, Jiang N (2009) Associations between smoking and extreme dieting among adolescents. J Youth Adolesc 38:1364–1373

    Article  PubMed  Google Scholar 

  • Sharpe AL, Klaus JD, Beckstead MJ (2012) Meal schedule influences food restriction-induced locomotor sensitization to methamphetamine. Psychopharmacology (Berl) 219:795–803

    Article  CAS  Google Scholar 

  • Simon GE, Von Korff M, Saunders K, Miglioretti DL, Crane PK, van Belle G, Kessler RC (2006) Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 63:824–830

    Article  PubMed  Google Scholar 

  • Stamp JA, Mashoodh R, van Kampen JM, Robertson HA (2008) Food restriction enhances peak corticosterone levels, cocaine-induced locomotor activity, and DeltaFosB expression in the nucleus accumbens of the rat. Brain Res 1204:94–101

    Article  PubMed  CAS  Google Scholar 

  • Verhagen LA, Egecioglu E, Luijendijk MC, Hillebrand JJ, Adan RA, Dickson SL (2011) Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. Eur Neuropsychopharmacol 21:384–392

    Article  PubMed  CAS  Google Scholar 

  • Warren M, Frost-Pineda K, Gold M (2005) Body mass index and marijuana use. J Addict Dis 24:95–100

    Article  PubMed  Google Scholar 

  • Wellman PJ, Nation JR, Davis KW (2007) Impairment of acquisition of cocaine self-administration in rats maintained on a high-fat diet. Pharmacol Biochem Behav 88:89–93

    Article  PubMed  CAS  Google Scholar 

  • Wellman PJ, Hollas CN, Elliott AE (2008) Systemic ghrelin sensitizes cocaine-induced hyperlocomotion in rats. Regul Pept 146:33–37

    Article  PubMed  CAS  Google Scholar 

  • Wiederman MW, Pryor T (1996) Substance use and impulsive behaviors among adolescents with eating disorders. Addict Behav 21:269–272

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, McEwen BS, Yan Z (2011) Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol Psychiatry 16:156–170

    Article  PubMed  CAS  Google Scholar 

  • Zhen J, Reith ME, Carr KD (2006) Chronic food restriction and dopamine transporter function in rat striatum. Brain Res 1082:98–101

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, Cabeza de Vaca S, Carr KD (2012) Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats. Pharmacol Biochem Behav 100:538–544

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by DA03956 from NIDA/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Carr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, D., Liu, S., Cabeza de Vaca, S. et al. Effects of time of feeding on psychostimulant reward, conditioned place preference, metabolic hormone levels, and nucleus accumbens biochemical measures in food-restricted rats. Psychopharmacology 227, 307–320 (2013). https://doi.org/10.1007/s00213-013-2981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-2981-4

Keywords

Navigation