Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory

Abstract

The acquisition and consolidation of memories of stressful events is modulated by glucocorticoids, a type of corticosteroid hormone that is released in high levels from the adrenal glands after exposure to a stressful event. These effects occur through activation of mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The molecular mechanisms that underlie the effects of glucocorticoids on synaptic transmission, synaptic plasticity, learning and memory have recently begun to be identified. Glucocorticoids regulate AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptor trafficking — which is crucially involved in synaptic transmission and plasticity — both rapidly and persistently. Stress hormones may, through modulation of AMPA receptor function, promote the consolidation of behaviourally relevant information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stress, stress hormones and memory formation.
Figure 2: Differential effects of stress hormones on AMPA receptor trafficking.

Similar content being viewed by others

References

  1. Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nature Rev. Neurosci. 3, 453–462 (2002).

    CAS  Google Scholar 

  2. de Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005).

    CAS  Google Scholar 

  3. Lightman, S. L. & Conway-Campbell, B. L. The crucial role of pulsatile signalling of the HPA axis for continuous dynamic calibration.. Nature Rev. Neurosci. 15 Sep 2010 (doi: 10.1038/nrn2914).

    CAS  PubMed  Google Scholar 

  4. Orchinik, M., Murray, T. F. & Moore, F. L. A corticosteroid receptor in neuronal membranes. Science 252, 1848–1851 (1991).

    CAS  PubMed  Google Scholar 

  5. Karst, H. et al. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl Acad. Sci. USA 102, 19204–19207 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Groc, L., Choquet, D. & Chaouloff, F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nature Neurosci. 11, 868–870 (2008).

    CAS  PubMed  Google Scholar 

  7. Karst, H., Berger, S., Erdmann, G., Schütz, G. & Joëls, M. Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc. Natl Acad. Sci. USA 107, 14449–14454 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Di, S., Malcher-Lopes, R., Marcheselli, V. L., Bazan, N. G. & Tasker, J. G. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and γ-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology 146, 4292–4301 (2005).

    CAS  PubMed  Google Scholar 

  9. Venero, C. & Borrell, J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur. J. Neurosci. 11, 2465–2473 (1999).

    CAS  PubMed  Google Scholar 

  10. Joëls, M., Pu, Z., Wiegert, O., Oitzl, M. S. & Krugers, H. J. Learning under stress: how does it work? Trends Cogn. Sci. 10, 152–158 (2006).

    PubMed  Google Scholar 

  11. Joëls, M. & Baram, T. Z. The neuro-symphony of stress. Nature Rev. Neurosci. 10, 459–466 (2009).

    Google Scholar 

  12. McEwen, B. S. & Gianaros, P. J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. NY Acad. Sci. 1186, 190–222 (2010).

    PubMed  Google Scholar 

  13. Joëls, M. Impact of glucocorticoids on brain function: relevance for mood disorders. Psychoneuroendocrinology 10 Apr 2010 (doi:10.1016/j.psyneuen.2010.03.004).

    PubMed  Google Scholar 

  14. Joëls, M. & de Kloet, E. R. Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science 245, 1502–1505 (1989).

    PubMed  Google Scholar 

  15. de Kloet, E. R., Oitzl, M. S. & Joëls, M. Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci. 22, 422–426 (1999).

    CAS  PubMed  Google Scholar 

  16. Oitzl, M. S. & de Kloet, E. R. Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav. Neurosci. 106, 62–71 (1992).

    CAS  PubMed  Google Scholar 

  17. Sandi, C. & Rose, S. P. Corticosteroid receptor antagonists are amnestic for passive avoidance learning in day-old chicks. Eur. J. Neurosci. 6, 1292–1297 (1994).

    CAS  PubMed  Google Scholar 

  18. Pugh, C. R., Tremblay, D., Fleshner, M. & Rudy, J. W. A selective role for corticosterone in contextual-fear conditioning. Behav. Neurosci. 111, 503–511 (1997).

    CAS  PubMed  Google Scholar 

  19. Roozendaal, B. & McGaugh, J. L. Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol. Learn. Mem. 65, 1–8 (1996).

    CAS  PubMed  Google Scholar 

  20. Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nature Rev. Neurosci. 10, 423–433 (2009).

    CAS  Google Scholar 

  21. Oitzl, M. S., Reichardt, H. M., Joëls, M. & de Kloet, E. R. Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proc. Natl Acad. Sci. USA 98, 12790–12795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Roozendaal, B. et al. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J. Neurosci. 30, 5037–5046 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. de Quervain, D. J., Roozendaal, B. & McGaugh, J. L. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394, 787–790 (1998).

    CAS  PubMed  Google Scholar 

  24. Brinks, V., de Kloet, E. R. & Oitzl, M. S. Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Exp. Neurol. 216, 375–382 (2009).

    CAS  PubMed  Google Scholar 

  25. Schwabe, L., Wolf, O. T. & Oitzl, M. S. Memory formation under stress: quantity and quality. Neurosci. Biobehav. Rev. 34, 584–591 (2010).

    PubMed  Google Scholar 

  26. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS  PubMed  Google Scholar 

  27. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    CAS  PubMed  Google Scholar 

  28. Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behaviour. Neuron 61, 340–350 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Neves, G., Cooke, S. F. & Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci. 9, 65–75 (2008).

    CAS  Google Scholar 

  30. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    CAS  PubMed  Google Scholar 

  31. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    CAS  PubMed  Google Scholar 

  32. Mayer, M. L. & Armstrong, N. Structure and function of glutamate receptor ion channels. Annu. Rev. Physiol. 66, 161–181 (2004).

    CAS  PubMed  Google Scholar 

  33. Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kennedy, M. J. & Ehlers, M. D. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci. 29, 325–362 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kapitein, L. C. et al. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr. Biol. 20, 290–299 (2010).

    CAS  PubMed  Google Scholar 

  36. Groc, L. & Choquet, D. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res. 326, 423–438 (2006).

    CAS  PubMed  Google Scholar 

  37. Newpher, T. M. & Ehlers, M. D. Glutamate receptor dynamics in dendritic microdomains. Neuron 58, 472–497 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Z. et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135, 535–548 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoogenraad, C. C. et al. Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes. PLoS Biol. 8, e1000283 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Kennedy, M. J., Davison, I. G., Robinson, C. G. & Ehlers, M. D. Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 141, 524–535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yudowski, G. A. et al. Real-time imaging of discrete exocytic events mediating surface delivery of AMPA receptors. J. Neurosci. 27, 11112–11121 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Leonoudakis, D., Zhao, P. & Beattie, E. C. Rapid tumor necrosis factor α-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. J. Neurosci. 28, 2119–2130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jaskolski, F., Martin, S. & Henley, J. M. Retaining synaptic AMPARs. Neuron 55, 825–827 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, D. T. et al. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nature Neurosci. 12, 879–887 (2009).

    CAS  PubMed  Google Scholar 

  45. Rácz, B., Blanpied, T. A., Ehlers, M. D. & Weinberg, R. J. Lateral organization of endocytic machinery in dendritic spines. Nature Neurosci. 7, 917–918 (2004).

    PubMed  Google Scholar 

  46. Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    CAS  PubMed  Google Scholar 

  47. Petrini, E. M. et al. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 16, 92–105 (2009).

    Google Scholar 

  48. Makino, H. & Malinow, R. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64, 381–390 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yudowski, G. A., Puthenveedu, M. A. & von Zastrow, M. Distinct modes of regulated receptor insertion to the somatodendritic plasma membrane. Nature Neurosci. 9, 622–627 (2006).

    CAS  PubMed  Google Scholar 

  50. Yang, Y., Wang, X. B., Frerking, M. & Zhou, Q. Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc. Natl Acad. Sci. USA 105, 11388–11393 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Rev. Neurosci. 10, 647–658 (2009).

    CAS  Google Scholar 

  52. Takahashi, T., Svoboda, K., Malinow, R. Experience strengthening transmission by driving AMPA receptors into synapses. Science 299, 1585–1588 (2003).

    CAS  PubMed  Google Scholar 

  53. Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).

    CAS  PubMed  Google Scholar 

  54. Matsuo, N., Reijmers, L. & Mayford, M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 319, 1104–1107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    CAS  PubMed  Google Scholar 

  56. Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    CAS  PubMed  Google Scholar 

  57. Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nature Neurosci. 9, 602–604 (2006).

    CAS  PubMed  Google Scholar 

  58. Adesnik, H. & Nicoll, R. A. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J. Neurosci. 25, 4598–4602 (2007).

    Google Scholar 

  59. Feldman, D. E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, G. B., Heynen, A. J. & Bear, M. F. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Phil. Trans. R. Soc. Lond. B 364, 357–367 (2009).

    Google Scholar 

  61. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 277–280 (2006).

    Google Scholar 

  62. Isaac, J. T., Ashby, M. & McBain, C. J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54, 859–871 (2007).

    CAS  PubMed  Google Scholar 

  63. Olijslagers, J. E. et al. Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. Eur. J. Neurosci. 27, 2542–2550 (2008).

    CAS  PubMed  Google Scholar 

  64. Martin, S. et al. Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity. PLoS ONE 4, e4714 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Karst, H. & Joëls, M. Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J. Neurophysiol. 94, 3479–3486 (2005).

    CAS  PubMed  Google Scholar 

  66. Conboy, L. & Sandi, C. Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoids action. Neuropharmacology 35, 674–685 (2010).

    CAS  Google Scholar 

  67. Wiegert, O., Joëls, M. & Krugers, H. Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus. Learn. Mem. 13, 110–113 (2006).

    CAS  PubMed  Google Scholar 

  68. Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160–173 (2007).

    CAS  PubMed  Google Scholar 

  69. Blank, T. et al. Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning. J. Neurosci. 23, 700–707 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Carlson, G., Wang, Y. & Alger, B. E. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nature Neurosci. 5, 723–724 (2002).

    CAS  PubMed  Google Scholar 

  71. Campolongo, P. et al. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc. Natl Acad. Sci. USA 106, 4888–4493 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Roozendaal, B., Schelling, G. & McGaugh, J. L. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the β-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation. J. Neurosci. 28, 6642–6651 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pu, Z., Krugers, H. J. & Joëls, M. Corticosterone time-dependently modulates β-adrenergic effects on long-term potentiation in the hippocampal dentate gyrus. Learn. Mem. 14, 359–367 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–681 (2002).

    Google Scholar 

  75. Saglietti, L. et al. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 54, 461–477 (2007).

    CAS  PubMed  Google Scholar 

  76. Wiegert, O., Pu, Z., Shor, S., Joëls, M. & Krugers, H. Glucocorticoid receptor activation selectively hampers N-methyl-D-aspartate receptor dependent hippocampal synaptic plasticity in vitro. Neuroscience 135, 403–411 (2005).

    CAS  PubMed  Google Scholar 

  77. Abraham, W. V. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    CAS  PubMed  Google Scholar 

  78. Diamond, D. M., Park, C. R. & Woodson, JC . Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP. Hippocampus 14, 281–291 (2004).

    PubMed  Google Scholar 

  79. Woodson, J. C., Macintosh, D., Fleshner, M. & Diamond, D. M. Emotion-induced amnesia in rats: working memory-specific impairment, corticosterone-memory correlation, and fear versus arousal effects on memory. Learn. Mem. 10, 326–336 (2003).

    PubMed  PubMed Central  Google Scholar 

  80. Zoladz, P. R., Woodson, J. C., Haynes, V. F. & Diamond, D. M. Activation of a remote (1-year old) emotional memory interferes with the retrieval of a newly formed hippocampus -dependent memory in rats. Stress 13, 36–52 (2010).

    PubMed  Google Scholar 

  81. Xu, L., Holscher, C., Anwyl, R. & Rowan, M. J. Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proc. Natl Acad. Sci. USA 95, 3204–3208 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Coussens, C. M., Kerr, D. S. & Abraham, W. C. Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels. J. Neurophysiol. 78, 1–9 (1997).

    CAS  PubMed  Google Scholar 

  83. Shimshek, D. R. et al. Forebrain-specific glutamate receptor B deletion impairs spatial memory but not hippocampal field long-term potentiation. J. Neurosci. 26, 8428–8440 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Migues, P. V. et al. PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nature Neurosci. 13, 630–634 (2010).

    CAS  PubMed  Google Scholar 

  85. Elias, G. M. & Nicoll, R. A. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol. 17, 343–352 (2007).

    CAS  PubMed  Google Scholar 

  86. Farrant, M. & Cull-Candy, S. G. AMPA receptors — another twist? Science 327, 1463–1465 (2010).

    CAS  PubMed  Google Scholar 

  87. Schwenk. J. et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323, 1313–1319 (2009).

  88. von Engelhardt, J. et al. CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. Science 327, 1518–1522 (2010).

    CAS  PubMed  Google Scholar 

  89. Schlager, M. A. & Hoogenraad, C. C. Basic mechanisms for recognition and transport of synaptic cargos. Mol. Brain. 2, 25 (2010).

    Google Scholar 

  90. Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85–100 (2009).

    CAS  PubMed  Google Scholar 

  91. Hotulainen, P. & Hoogenraad, C. C. Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619–629 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Janke, C. & Kneussel, M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 33, 362–372 (2010).

    CAS  PubMed  Google Scholar 

  93. Esteban, J. A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature Neurosci. 6, 136–143 (2003).

    CAS  PubMed  Google Scholar 

  94. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    CAS  PubMed  Google Scholar 

  95. Boehm, J. et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51, 213–225 (2006).

    CAS  PubMed  Google Scholar 

  96. Derkach, V. A., Oh, M. C., Guire, E. S. & Soderling, T. R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Rev. Neurosci. 8, 101–113 (2007).

    CAS  Google Scholar 

  97. Revest, J. M. et al. The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neurosci. 8, 664–672 (2005).

    CAS  PubMed  Google Scholar 

  98. Liu, W., Yuen, E. Y. & Yan, Z. The stress hormone corticosterone increases synaptic α-amino-3-hydroxy-5-methyl-4-isozazolepropionic acid (AMPA) receptors via serum-and glucocorticoids-inducible kinase (SGK) regulation of the GDI–Rab4 complex. J. Biol. Chem. 285, 6101–6108 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron. 37, 577–582 (2003).

    CAS  PubMed  Google Scholar 

  100. Winder, D. G. et al. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by β-adrenergic receptors. Neuron 24, 715–726 (1999).

    CAS  PubMed  Google Scholar 

  101. Groc, L. & Choquet, D. Measurement and characteristics of neurotransmitter receptor surface trafficking. Mol. Membr. Biol. 25, 344–352 (2008).

    CAS  PubMed  Google Scholar 

  102. Renner, M. L., Cognet, L., Lounis, B., Triller, A. & Choquet, D. The excitatory postsynaptic density is a size exclusion diffusion environment. Neuropharmalogy 56, 30–36 (2009).

    CAS  Google Scholar 

  103. Diamond, D. M, Bennett, M. C., Fleshner, M. & Rose, G. M. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2, 421–430 (1992).

    CAS  PubMed  Google Scholar 

  104. Xu, L., Anwyl, R. & Rowan, M. J. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387, 497–500 (1997).

    CAS  PubMed  Google Scholar 

  105. Kim, J. J., Lee, H. J., Han, J. S. & Packard, M. G. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J. Neurosci. 21, 5222–5228 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.J.K. is supported by the Royal Dutch Academy of Arts and Sciences (grants 05CDP013 and 08CDP004), the Dutch Brain Foundation (grant 13F05.02 and 2008 (1).07) and the Netherlands Organization for Scientific Research (grant ALW 820.02.006). C.C.H. is supported by the Netherlands Organization for Scientific Research (grants NWO-ALW and NWO-ECHO), the Netherlands Organization for Health Research and Development (grants ZonMw-VIDI and ZonMw-TOP), the Human Frontier Science Program Career Development Award (HFSP-CDA), the European Science Foundation (European Young Investigators Award) and the European Molecular Biology Organization Young Investigators Programme. L.G. is supported by the Centre National de la Recherche Scientifique, the Young Investigator Award from the Agence Nationale de la Recherche (grant JC08_329,238), Fondation pour la Recherche Médicale, Université Bordeaux 2, and Conseil Régional d'Aquitaine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harmen J. Krugers, Casper C. Hoogenraad or Laurent Groc.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Casper Hoogenraad's homepage

The Swammerdam Institute for Life Sciences (SILS) Center for Neuroscience homepage

Glossary

Contextual learning

A behavioural paradigm in which animals learn information about a specific context.

Endosomal pathway

A pathway that regulates the internalization of molecules from the plasma membrane by recycling them back to the cell surface or by sorting them to degradation.

Fear conditioning

A behavioural paradigm in which animals learn to predict aversive events.

Inhibitory avoidance task

A behavioural paradigm in which animals learn to associate an aversive stimulus with a particular environment.

Mineralocorticoid receptor

A steroid receptor that has high affinity for both mineralocorticoids and glucocorticoids.

Morris water maze task

A behavioural test for studying spatial learning and memory in rodents.

Motor protein

Motor proteins (such as kinesin, dynein and myosin) use the microtubule or actin skeleton for movement by converting chemical energy into mechanical work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krugers, H., Hoogenraad, C. & Groc, L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat Rev Neurosci 11, 675–681 (2010). https://doi.org/10.1038/nrn2913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing