Skip to main content
Log in

Regulation of mitochondrial cytochromeb mRNA by copper in cultured human hepatoma cells and rat liver

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper overload and deficiency are known to cause morphological and functional mitochondrial abnormalities. The reverse transcriptase-polymerase chain reaction (RT-PCR)-based method of differential display of mRNA was used to identify genes with altered expression in cultured human hepatoma cells (Hep G2) exposed to increasing concentrations of copper (0–100 ΜM, 24 h). Copper regulation of a cloned PCR product, identified as the gene for the mitochondrially encoded cytochromeb, was confirmed by Northern analysis andin situ hybridization. Copper toxicity increased cytochromeb mRNA abundance up to 3.6-fold, and copper chelation reduced it by 50%. Hepatic cytochromeb mRNA was also increased in rats fed a high-copper diet. Thapsigargin treatment resulted in a significant increase in cytochromeb mRNA, suggesting that an increase in intracellular calcium may be involved in the mechanism of copper action. Furthermore, although cyclohexamide (CHX) alone did not increase cytochromeb mRNA, the addition of CHX and copper resulted in a sixfold increase. These data suggest a role for cytochromeb in the response to increases or decreases in hepatic copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Mikhail, W. G. Nicola, K. H. Ibrahim, S. H. Salama, and M. Emam, Abnormal zinc and copper metabolism in hepatic steatosis,Boll. Chim. Farm. 135, 591–597 (1996).

    PubMed  CAS  Google Scholar 

  2. J. Aaseth, Y. Thomassen, E. Aadland, O. Fausa, and E. Schrumpf, Hepatic retention of copper and selenium in primary sclerosing cholangitis,Scand. J. Gastroenerol. 30, 1200–1203 (1995).

    Article  CAS  Google Scholar 

  3. I. H. Scheinberg and I. Sternlieb, Wilson disease and idopathic copper toxicosis,Am. J. Clin. Nutr. 63(Suppl.), 842–845S (1996).

    Google Scholar 

  4. S. Toyokuni, S. Okada, S. Hamazaki, M. Fujioka, J. Li, and O. Midorikawa, Cirrhosis of the liver induced by cupric nitrilotriacetate in Wistar rats: an experimental model of copper toxicosis,Am. J. Pathol. 134, 1263–1274 (1989).

    PubMed  CAS  Google Scholar 

  5. M. Sawaki, A. Hattori, N. Tsuzuki, N. Sugawara, K. Enomoto, N. Sawada, et al., Chronic liver injury promotes hepatocarcinogenesis of the LEC rat,Carcinogenesis 19, 331–335 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. M. Harada, S. Sakisaka, M. Yoshitake, S. Shakadoh, K. Gondoh, M. Sata, et al., Tanikawa, Biliary copper excretion in acutely and chronically copper-loaded rats.Hepatology 17, 111–117 (1993).

    PubMed  CAS  Google Scholar 

  7. J. S. Kumaratilake and J. M. Howell, Lysosomes in the pathogenesis of liver injury in chronic copper poisoned sheep: an ultrastructural and morphometric studyJ. Comp. Pathol. 100, 381–390 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. B. M. Myers, F. G. Prendergast, R. Holman, S. Kuntz, and N. F. LaRusso, Alterations in hepatocyte lysosomes in experimental hepatic copper overload in rats,Gastroenterology 105, 1814–1823 (1993).

    PubMed  CAS  Google Scholar 

  9. R. S. Britton, Metal-induced hepatoxicity,Semin. Liver Dis. 16, 3–12 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. I. Sternlieb, N. Quintana, I. Volenberg, and M. L. Schilsky, An array of mitochondrial alterations in the hepatocytes of Long-Evans Cinnamon rats,Hepatology 22, 1782–1787 (1995).

    PubMed  CAS  Google Scholar 

  11. I. Sternlieb, Mitochondrial and fatty changes in hepatocytes of patients with Wilson’s disease,Gastroenterology 55, 354–367 (1968).

    PubMed  CAS  Google Scholar 

  12. H. Seo, B. Xie, S. Wang, H. Yoshikawa, T. Oyamada, and T. Yoshikawa, Ultrastructure of hepatocytes in copper-deficient Sika deer,J. Comp. Pathol. 114, 283–290 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. R. J. Sokol, M. W. Devereaux, K. O’Brien, R. A. Khandwala, and J. P. Loehr, Abnormal hepatic mitochondrial respiration and cytochrome c oxidase activity in rats with long-term copper overload,Gastroenterology 105, 178–187 (1993).

    PubMed  CAS  Google Scholar 

  14. O. Strubelt, J. Kremer, A. Tilse, J. Keogh, R. Pentz, and M. Younes, Comparative studies on the toxicity of mercury, cadmium, and copper toward the isolated perfused rat liver,J. Toxicol. Environ. Health 47, 267–283 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. D. P. Aden, A. Fogel, S. Plotkin, I. Damjanov, and B. B. Knowles, Controlled synthesis of HbsAg in a differentiated human liver carcinoma-derived cell line,Nature 282, 615–616 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. B. B. Knowles, C. C. Howe, and D. P. Aden, Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen,Science 209, 497–499 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction,Anal. Biochem. 162, 156–159 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. D. L. Greenman, R. L. Morrissey, E. Blakemore, J. Crowell, P. Siitonen, P. Felton, et al., Subchronic toxicity of triethylenetetramine dihydrochloride in B6C3F1 mice and F344 rats,Fundam. Appl. Toxicol. 29, 185–93 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. A. R. Perry, A. Pagliuca, E. J. Fitzsimons, G. J. Muft, and R. Williams, Acquired sideroblastic anaemia induced by a copper-chelating agent,Int. J. Hematol. 64, 69–72 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. C. W. Levenson and M. Janghorbani, Long-term measurement of organ copper turnover in rats by continuous feeding of a stable isotope,Anal. Biochem. 221, 243–249 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. R. Liang and A. B. Pardee, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction,Science 257, 967–971 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. R. K. Blanchard and R. J. Cousins, Differential display of intestinal mRNAs regulated by dietary zinc,Proc. Natl. Acad. Sci, USA 93, 6863–6868 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. D. L. Spector, R. D. Goldman, and L. A. Leinwand, In situ hybridization to RNA, inCells: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, Vol. 3, pp. 116.1–116.16 (1998).

    Google Scholar 

  24. J. Y. Tso, X. H. Sun, T. H. Kao, K. S. Reece, and R. Wu, Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene,Nucleic Acids Res. 3, 2485–502 (1985).

    Article  Google Scholar 

  25. D. Tyler,The Mitochondrion in Health and Disease, VCH, New York (1992).

    Google Scholar 

  26. R. J. Sokol, D. Twedt, J. M. McKi, M. W. Devereaux, F. M. Karrer, I. Kam, et al., Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis,Gastroenterology 107, 1788–1798 (1994).

    PubMed  CAS  Google Scholar 

  27. R. E. C. Wildman, R. Hopkins, M. L. Failla, and D. M. Medeiros, Marginal copperrestricted diets produce altered cardiac ultrastructure in the rat,Proc. Soc. Exp. Biol. Med. 210, 43–49 (1995).

    PubMed  CAS  Google Scholar 

  28. D. M. Medeiros, J. Davidson, and J. E. Jenkins, A unified perspective on copper deficiency and cardiomyopathy,Proc. Soc. Exp. Biol. Med. 203, 262–273 (1993).

    PubMed  CAS  Google Scholar 

  29. M. Guerineau, S. Guerineau, and C. Gosse, Abnormal mitochondria DNA molecules in megamitochondria from cuprizone treated rats,Eur. J. Biochem. 47, 313–319 (1974).

    Article  PubMed  CAS  Google Scholar 

  30. B. Kaminska, L. Kaczmarek, S. Larocque, and A. Chaudhuri, Activity-dependent regulation of cytochrome b gene expression in monkey visual cortex,J. Comp. Neurol. 379, 271–282 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. H. Suzuki, T. Kumagai, A. Goto, and T. Sugiura, Increase in intracellular hydrogen peroxide and upregulation of a nuclear respiratory gene evoked by impairment of mitochondrial electron transfer in human cells,Biochem. Biophys. Res. Commun. 249, 542–545 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. S. Strand, W. J. Hofmann, A. Grambihler, H. Hug, M. Volkman, G. Otto, et al., Hepatic failure and liver cell damage in acute Wilson’s disease involve CD95 (APO-1/Fas) mediated apoptosis,Nat. Med. 4, 588–93 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. H. Hug, S. Strand, A. Grambihler, A. Galle, V. Hack, W. Stremmel, et al., Reactive oxygen intermediates are involved in the induction of CD95 ligand mRNA expression by cytostatic drugs in hepatoma cells.J. Biol. Chem. 272, 28191–28193 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. C. V. Demonacos, N. Karayanni, E. Hatzoglou, C. Tsiriyiotis, D. A. Spandidos, and C. E. Sekeris, Mitochondrial genes as sites of primary action of steroid hormones,Steroids 61, 226–232 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. C. Demonacos, R. Djordjevic-Markovic, N. Tsawdaroglou, and C. E. Sekeris, The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements,J. Steroid Biochem. Mol. Biol. 55, 43–55 (1995).

    Article  PubMed  CAS  Google Scholar 

  36. K. Umesono and R. M. Evans, Determinants of target gene specificity for steroid/thyroid hormone receptors,Cell 57, 1139–1146 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. P. F. Predki and B. Sarkar, Metal replacement in “zinc finger” and its effect on DNA binding,Environ. Health Perspect. 102(Suppl. 3), 195–198 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. W. Chen and C. L. Dieckmann, Genetic evidence for interactio between Cbp 1 and specific nucleotides in the 5′ untranslated region of mitochondrial cytochrome b mRNA in Saccharomyces cerevisiae,Mol. Cell Biol. 17, 6203–6211 (1997).

    PubMed  CAS  Google Scholar 

  39. W. E. N. D. Evering, S. Haywood, I. Bremner, and J. Trafford, The protective role of metallothionein in copper overload: I. Differential distribution of immunoreactive metallothionein in copper-loaded rat liver and kidney,Chem.-Biol. Interact. 78, 283–295, 1991.

    Article  PubMed  CAS  Google Scholar 

  40. O. M. Steinebach, and H. T. Wolterbeek, Effects of copper on rat hepatoma HTC cells and primary cultured rat hepatocytes,J. Inorg. Biochem. 53, 27–48 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levenson, C.W., Song, Y., Narayanan, V.S. et al. Regulation of mitochondrial cytochromeb mRNA by copper in cultured human hepatoma cells and rat liver. Biol Trace Elem Res 70, 149–164 (1999). https://doi.org/10.1007/BF02783856

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783856

Index Entries

Navigation