Skip to main content
Log in

Isolation and propagation of yolk-sac-derived endothelial cells from a hypervascular transgenic mouse expressing a gain-of-functionFPS/FES proto-oncogene

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We report on the isolation and propagation of endothelial cells from the mouse embryonic yolk sac, the earliest site of blood vessel development, and on the advantages of a hypervascular transgenic mouse source of these cells. These transgenic mice express multiple copies of an activated allele of the humanfps/fes proto-oncogene and display hypervascularity progressing to multifocal hemangiomas. This phenotype suggested a role of thefps/fes proto-oncogene in vasculogenesis and angiogenesis and led us to investigate the growth characteristics of yolk-sac-derived endothelial cells from transgenicfps/fes embryos. We have established eight independent cell clones from a mixture of transgenic and control yolk sacs from Day 12 embryos. Southern blot hybridization analysis showed all eight clones to be derived from transgenic cells suggesting a growth advantage of cells carrying the activatedfps/fes gene. A cell line, Clone 166 (C166), established from one of these clones, was more fully characterized. C166 exhibits normal endothelial characteristics, such as rearrangement into tubelike structures when placed on Matrigel, expression of angiotensin converting enzyme, retention of cobblestone morphology at confluence, and the presence of cell surface receptors for acetylated low density lipoprotein. The cells constitutively express murine endothelial cell adhesion molecule VCAM-1 and the vascular addressin identified by antibody MECA-99. As expected, the cell line expresses high levels of the cytoplasmic protein-tyrosine kinase encoded by thefps/fes proto-oncogene. The clone we have described as well as other endothelial cell lines that we have established from the mouse embryonic yolk sac should prove useful for the study of endothelial cell differentiation and for the determination of the mechanisms underlying the establishment of organ-specific endothelial cell heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alby, L.; Auerbach, R. Differential adhesion of tumor cells to capillary endothelial cells in vitro. Proc. Natl. Acad. Sci. USA 81:5739–5743; 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Alcalay, M.; Antolini, F.; Van de Ven, W. J., et al. Characterization of human and mouse c-fes cDNA clones and identification of the 5′ end of the gene. Oncogene 5:267–275; 1990.

    PubMed  CAS  Google Scholar 

  3. Auerbach, R. Vascular endothelial cell differentiation: organ-specificity and selective affinities as the basis for developing anti-cancer strategies. Int. J. Radiat. Biol. 60:1–10; 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Auerbach, R. Endothelial cell heterogeneity: Its role as a determinant of selective metastasis. In: “Endothelial Cell Dysfunction,” N. Simionescu, O. Simionescu, eds. Plenum Press, s 427–437, 1992.

  5. Auerbach, R.; Alby, L.; Grieves, J., et al. Monoclonal antibody against angiotensin-converting enzyme: its use as a marker for murine, bovine, and human endothelial cells. Proc. Natl. Acad. Sci. USA 79:7891–7895; 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Ausprunk, D. H.; Folkman, J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14:53–65; 1977.

    Article  PubMed  CAS  Google Scholar 

  7. Bautch, V. L.; Toda, S.; Hassell, J. A., et al. Endothelial cell tumors develop in transgenic mice carrying polyoma virus middle T oncogene. Cell 51:529–538; 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Butcher, E. C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–1036; 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. D'Amore, P. A. Mechanisms of endothelial growth control. Am. J. Respir. Cell Mol. Biol. 6:1–8; 1992.

    PubMed  Google Scholar 

  11. D'Amore, P. A.; Thompson, R. W. Mechanisms of angiogenesis. Annu. Rev. Physiol. 49:453–464; 1987.

    Article  PubMed  Google Scholar 

  12. Dilworth, S. M.; Brewster, C. E.; Jones, M. D., et al. Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc. Nature 367:87–90; 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Ellis, C.; Moran, M.; McCormick, F., et al. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343:377–381; 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Globerson, A.; Woods, V.; Abel, L., et al. In vitro differentiation of mouse embryonic yolk sac cells. Differentiation 36:185–193; 1987.

    Article  PubMed  CAS  Google Scholar 

  15. Greer, P.; Haigh, J.; Mbamalu, G., et al. The Fps/Fes protein-tyrosine kinase promotes angiogenesis in transgenic mice. Mol. Cell. Biol. 14:6755–6763; 1994.

    PubMed  CAS  Google Scholar 

  16. Gumkowski, F.; Kaminska, G.; Kaminski, M., et al. Heterogeneity of mouse vascular endothelium. In vitro studies of lymphatic, large blood vessel and microvascular endothelial cells. Blood Vessels 24:11–23; 1987.

    PubMed  CAS  Google Scholar 

  17. Haar, J. L.; Ackerman, G. A. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat. Rec. 170:199–224; 1971.

    Article  PubMed  CAS  Google Scholar 

  18. Hasthorpe, S.; Bogdanovski, M.; Rogerson, J., et al. Characterization of endothelial cells in murine long-term marrow culture. Implication for hemopoietic regulation. Exp. Hematol. 20:476–481; 1992.

    PubMed  CAS  Google Scholar 

  19. Herman, S. A.; Coffin, J. M. Differential transcription from the long terminal repeats of integrated avian leukosis virus DNA. J. Virol. 60:497–505; 1986.

    PubMed  CAS  Google Scholar 

  20. Howard, P. S.; Myers, J. C.; Gorfien, S. F., et al. Progressive modulation of endothelial phenotype duringin vitro blood vessel formation. Dev. Biol. 146:325–338; 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Kamps, M. P.; Sefton, B. M. Most of the substrates of oncogenic viral tyrosine protein kinases can be phosphorylated by cellular tyrosine protein kinases in normal cells. Oncogene Res. 3:105–115; 1988.

    PubMed  CAS  Google Scholar 

  22. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  23. Lu, L.-S.; Wang, S.-J.; Auerbach, R. Identification and analysis of the primitive hematopoietic stem cells in the murine yolk sac. In: Proceedings: Foetal and neonatal hematopoiesis and the mechanisms of bone marrow failure. Paris: INSERM; in press; 1995.

    Google Scholar 

  24. Mantovani, A.; Bussolino, F.; Dejana, E. Cytokine regulation of endothelial cell function. FASEB J. 6:2591–2599; 1992.

    PubMed  CAS  Google Scholar 

  25. Margolis, B.; Rhee, S. G.; Felder, S., et al. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell 57:1101–1107; 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Mereau, A.; Grey, L.; Piquet-Pellorce, C., et al. Characterization of a binding protein for leukemia inhibitory factor localized in extracellular matrix. J. Cell Biol. 3:713–719; 1993.

    Article  Google Scholar 

  27. Miyake, K.; Medina, K.; Ishihara, K., et al. A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. J. Cell Biol. 114:557–565; 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Miyake, K.; Weissman, I. L.; Greenberger, J. S., et al. Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J. Exp. Med. 173:599–607; 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Morgan, C.; Pollar, J. W.; Stanley, E. R. Isolation and characterization of a cloned growth factor dependent macrophage cell line, BAC1.2F5. J. Cell. Physiol. 130:420–427; 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Noden, D. M. Origins and assembly of avian embryonic blood vessels. Ann. NY Acad. Sci. 588:236–249; 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Obeso, J.; Weber, J.; Auerbach, R. A hemangioendothelioma-derived cell line: its use as a model for the study of endothelial cell biology. Lab. Invest. 63:259–269; 1990.

    PubMed  CAS  Google Scholar 

  32. Pardanaud, L.; Yassine, F.; Dieterlen-Lievre, F. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:473–485; 1989.

    PubMed  CAS  Google Scholar 

  33. Plendl, J.; Hartwell, L.; Auerbach, R Organ-specific change inDolichos biflorus lectin binding by myocardial endothelial cells during in vitro cultivation. In Vitro Cell. Dev. Biol. 29A:25–31; 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Risau, W.; Sariola, H.; Zerwes, H.-G., et al. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102:471–478; 1988.

    PubMed  CAS  Google Scholar 

  35. Roebroek, A. J.; Schalken, J. A.; Verbeek, J. S., et al. The structure of the human c-fes/fps proto-oncogene. EMBO J. 4:2897–2903; 1985.

    PubMed  CAS  Google Scholar 

  36. Shimizu, Y.; Newman, W.; Tanaka, Y., et al. Lymphocyte interactions with endothelial cells. Immunol. Today 13:106–112; 1992.

    Article  PubMed  CAS  Google Scholar 

  37. Southern, P. J.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promotor. J. Mol. Appl. Genet. 1:327–341; 1982.

    PubMed  CAS  Google Scholar 

  38. Stone, J. C.; Atkinson, T.; Smith, M., et al. Identification of functional regions in the transforming protein of Fujinami sarcoma virus by inphase insertion mutagenesis. Cell 37:549–558; 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Wagner, R. C. Endothelial cell embryology and growth. Adv. Microcirc. 9:45–75; 1980.

    Google Scholar 

  40. Williams, R. L.; Courtneidge, S. A.; Wagner, E. F. Embryonic lethalities and endothelial tumors in chimeric mice expressing polyoma virus middle T oncogene. Cell 52:121–131; 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Zimmerman, G. A.; Prescott, S. M.; McIntyre, T. M. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol. Today 13:93–100; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SJ., Greer, P. & Auerbach, R. Isolation and propagation of yolk-sac-derived endothelial cells from a hypervascular transgenic mouse expressing a gain-of-functionFPS/FES proto-oncogene. In Vitro Cell.Dev.Biol.-Animal 32, 292–299 (1996). https://doi.org/10.1007/BF02723062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723062

Key words

Navigation